МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ПРИБОРНО-ТЕХНОЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ ЭЛЕМЕНТНОЙ БАЗЫ МОЩНОЙ СВЧ-ЭЛЕКТРОНИКИ

Учебно-методическое пособие

Воронеж Издательский дом ВГУ 2016 Утверждено научно-методическим советом физического факультета 17 февраля 2016 г., протокол № 2

Составители: Р.П. Алексеев, А.Е. Бормонтов, Г.В. Быкадорова, В.А. Кожевников

Рецензент – доктор физико-математических наук, профессор В.А. Терехов

Учебно-методическое пособие подготовлено на кафедре физики полупроводников и микроэлектроники физического факультета Воронежского государственного университета.

Рекомендуется для студентов 1-го и 2-го курсов очной формы обучения физического факультета, обучающихся по программам магистратуры.

Для направлений: 03.04.03 – Радиофизика; 11.04.04 – Электроника и наноэлектроника

СОДЕРЖАНИЕ

1. Дискретная элементная база современной мощной СВЧ-электроники	4
1.1. Обзор дискретной элементной базы современной мощной СВЧ-	
электроники	4
1.2. Классификация моделей мощных СВЧ-транзисторов	7
2. Приборно-технологическая САПР ТСАД для моделирования	
дискретной электронной компонентной базы	10
2.1. Состав приборно-технологической САПР TCAD	10
2.2. Оптимизаторы расчетной сетки MDRAW и MESH	11
2.3. Программный модуль для моделирования технологических	
процессов микроэлектроники	15
2.4. Программный модуль для моделирования структуры	
полупроводниковых приборов	23
2.5. Программный модуль для моделирования электрофизических	
параметров полупроводниковых структур	25
2.6. Визуализация результатов численных экспериментов	34
3. Приборно-технологическое проектирование LDMOS-структур	38
3.1. Конструкция и технология LDMOS-структур	38
3.2. Проектирование технологии создания LDMOS-структур	39
3.2.1 Моделирование технологии создания LDMOS-структур	39
3.2.2. Приборно-технологическая модель LDMOS-транзистора	
B DIOS.	43
3.2.3. Создание металлических контактов в модуле DEVISE	47
3.2.4. Оптимизация сетки в модуле MESH	49
3.3. Расчет электрофизических параметров LDMOS-структур	53
3.3.1. Модели, используемы для расчета электрофизических	
параметров	53
3.3.2. Расчет переходной вольт-амперной характеристики	56
3.3.4. Расчет сопротивления сток-исток в открытом состоянии	60
3.3.5. Расчет напряжения пробоя сток-исток	62
3.3.5. Расчет межэлектродных емкостей	65
Библиографический список	68

1. ДИСКРЕТНАЯ ЭЛЕМЕНТНАЯ БАЗА СОВРЕМЕННОЙ МОЩНОЙ СВЧ-ЭЛЕКТРОНИКИ

1.1. Обзор дискретной элементной базы современной мощной СВЧ-электроники

На сегодняшний день существуют несколько конкурирующих типов мощных СВЧ-транзисторов [8, 10, 18]. Это традиционные биполярные кремниевые транзисторы [10, 11], кремниевые полевые (DMOS, VDMOS, LDMOS) транзисторы [8], транзисторы на основе арсенида галлия и очень активно развивающиеся в последнее время НЕМТ-транзисторы на нитриде галлия. Каждый из перечисленных типов приборов занимает определенную нишу [1], где он в силу своей специфики предпочтителен (рис. 1.1).

Рис. 1.1. Рабочие частоты и мощности различных типов СВЧ-транзисторов [1]

На основе арсенида галлия, который имеет более высокую подвижность электронов в сравнении с кремнием, реализуются СВЧ-транзисторы с более высокими рабочими частотами (свыше 250 ГГц) и низким уровнем потерь при высоких частотах, а также более высокими напряжениями пробоя. Однако при больших мощностях за счет худшей теплопроводности этот материал проигрывает кремнию.

Оптимальными характеристиками по сочетанию выходной мощности, рабочих частот и напряжений обладают CBЧ-элементы на основе GaN, однако высокая стоимость пластин нитрида галлия серьезно сдерживает его применение по сравнению с кремнием.

Перспективным направлением в развитии радиационно-стойкой элементной базы СВЧ-электроники связано с карбидом кремния [2]. Обладая шириной запрещенной зоны почти в 3 раза большей по сравнению с кремнием, карбид кремния обеспечивает работу приборов на его основе при температурах до 600 °C и в условиях ионизирующего излучения. При этом карбид кремния химически инертен, имеет высокую прочность и теплопроводность.

Зарубежные (табл. 1.1) и отечественные (табл. 1.2) фирмы-производители выпускают на рынок СВЧ-транзисторов широкий спектр приборов [1] на основе различных технологических материалов (Si, GaAs, GaN, SiC), различных типов (биполярные, полевые).

Таблица 1.1

Компания	Страна	Тип продукции				
Компания	(континент)					
Advanced	CIIIA	СВЧ Si биполярные транзисторы				
Semiconductor		СВЧ Si MOSFET-транзисторы, СВЧ-диоды				
Cree	CIIIA	СВЧ GaN и SiC MOSFET-транзисторы				
		CBЧ GaN ИС и модули				
Freesceale		CBЧ Si MOSFET, LDMOS-транзисторы				
Semiconductor	США	CB4 GaN PHEMT				
Semiconductor		СВЧ Si биполярные транзисторы				
Infineon	Европа	CBЧ Si MOSFET, LDMOS-транзисторы				
Integra	CIIIA	CBЧ Si MOSFET, LDMOS-транзисторы				
Technologies	США	СВЧ GaN транзисторы и модули				
IXUS RF	США	СВЧ Si MOSFET-транзисторы				
		СВЧ Si биполярные транзисторы				
MA-COM	США	СВЧ Si MOSFET, LDMOS-транзисторы				
		CBЧ GaN транзисторы и модули				
		CBЧ Si биполярные транзисторы				
Microsemi	США	СВЧ Si MOSFET, LDMOS-транзисторы				
		СВЧ SiC транзисторы, СВЧ-диоды				
Mitauhiahi	U HOULD	СВЧ Si MOSFET-транзисторы и модули				
IVIItSUUISIII	ЛПОНИЯ	СВЧ GaN FET, ИС и модули				
Nitonex	Япония	CBЧ GaN транзисторы и модули				
		CBЧ Si биполярные транзисторы				
NXP	Европа	CBЧ Si MOSFET, LDMOS-транзисторы				
		СВЧ GaN транзисторы и модули				
PolyFET	CIIIA	CBЧ Si MOSFET, LDMOS-транзисторы				
RFMD	CIIIA	CBЧ GaN ИС и модули				
Semelab	Европа	CBЧ Si MOSFET, LDMOS-транзисторы				
STM	Бъроно	СВЧ Si биполярные транзисторы				
SIM	Европа	СВЧ Si MOSFET, LDMOS-транзисторы				
TriQuint Semiconductor		CBЧ GaAs, GaN транзисторы и модули				
	США	CB4 InGaP NBT				
		CBЧ Si MOSFET, LDMOS-транзисторы				
Sumitomo	U HOUNG	СВЧ GaAs, GaN транзисторы				
	КИНОПК	СВЧ GaAs, GaN ИС и модули				

Зарубежные компании, производящие мощные СВЧ-транзисторы [1]

Таблица 1.2

Российские компании,	гроизводящие мощные	СВЧ транзистор	ры [7]	1
----------------------	---------------------	----------------	------	----	---

	ли, произосоли				
Компания	Город	Тип продукции			
«ВЗПП-Сборка»	Воронеж	Si биполярные транзисторы (P _{out} = 2–500 Вт, f = 50–1000 МГц)			
«ГЗ "Пульсар"»	Москва	Si биполярные транзисторы (P _{out} = 0,1–500 Вт, f до 8 ГГц)			
«Исток»	Фрязино	GaN полевые транзисторы (Р _{out} до 2 Вт, f = 1–40 ГГц)			
НИИПП	Томск	GaAs полевые транзисторы с барьером Шоттки (f до 4 ГГц) CBЧ-диоды Ганна (Pout более 100 мВт, f = 4–150 ГГц) CBЧ GaAs диоды Шоттки (f до 178 ГГц)			
НИИЭТ	Воронеж	Si биполярные транзисторы (P _{out} = 0,5–500 Вт, f = 100–1090 МГц) Si MOSFET, LDMOS-транзисторы (P _{out} = 5–600 Вт, f = 30–1000 МГц) СВЧ-модули			
«НПП «Пульсар»	Москва	Si биполярные транзисторы (P _{out} = 2,5–150 Вт, f = 1,2–3,1 ГГц) Si LDMOS-транзисторы (P _{out} = 5–200 Вт, f = 0,4–2 ГГц) СВЧ-модули			
«НПП "Планета- Аргалл"»	В. Новгород	GaN полевые транзисторы ($P_{out} = 15-500 \text{ мBt}, f = 0, 1-40 \Gamma \Gamma \mu$)			
«ВЗПП-Сборка»	Воронеж	Si биполярные транзисторы			
«ГЗ "Пульсар"»	Москва	Si биполярные транзисторы			
«Исток»	Фрязино	GaN полевые транзисторы			
ниипп	Томск	GaAs полевые транзисторы с барьером Шоттки СВЧ-диоды Ганна СВЧ GaAs диоды Шоттки			
НИИЭТ Воронеж		Si биполярные транзисторы Si MOSFET, LDMOS-транзисторы СВЧ-модули			
«НПП "Пульсар"»	Москва	Si биполярные транзисторы Si LDMOS-транзисторы CBЧ-модули			
«НПП "Планета- Аргалл"»	В. Новгород	GaN полевые транзисторы			

Однако, трудности получения на основе новых материалов качественных подложек с прецизионными характеристиками, разработки и внедрения нового технологического оборудования сдерживают развитие этих направлений.

Очевидными становятся преимущества кремниевой технологии в реализации компонентной базы мощной СВЧ-электроники [8]:

- невысокая стоимость кремниевых подложек;

 отработанность технологических процессов с размерами активных областей менее 100 нм;

- достаточно высокий коэффициент усиления;

 высокая выходная мощность за счет запараллеливания транзисторных структур;

– стабильность работы при рассогласовании и т. д.

Благодаря этому кремний является одним из наиболее благоприятных материалов по эффективной мощности в диапазоне 100÷2000 МГц, а кремниевые биполярные и полевые транзисторы занимают существенную долю рынка для гражданских и военных радарных систем, систем радио- и телепередающей аппаратуры, систем мобильной и стационарной связи в диапазоне до 2 ГГц.

1.2. Классификация моделей мощных СВЧ-транзисторов

В основе классификации моделей полупроводниковых приборов, в том числе и компонентной базы СВЧ-электроники (рис. 1.2), лежит степень абстракции моделей [5], которая определяет возможность их использования на различных уровнях моделирования с использованием современных САПР [12–17].

Рис. 1.2. Классификация моделей компонентной базы СВЧ-электроники [5]

Физико-технологические модели, описывающие с помощью систем линейных и нелинейных дифференциальных уравнений в частных производных происходящие в активных областях приборов физические процессы и явления: распределение заряда, перенос носителей заряда, непрерывность тока, квантово-механические эффекты и т. д. Применение сложных алгоритмов решения, таких как метод конечных разностей и метод конечных элементов, диктует необходимость использования пакетов приборнотехнологического моделирования различных фирм: Sentaurus (ISE TCAD) (фирма Synopsys [15]), Silvaco (фирма Silvaco [14]), Microtec (фирма Siborg System Inc. [13]).

Физико-технологическое моделирование успешно применяется в технологическом цикле проектирования новых СВЧ-транзисторов, что позволяет добиваться требуемых параметров и характеристик на постоянном и переменном токе, изменяя физические свойства и геометрические размеры приборов.

Компактные, или структурные, модели, реализующие расчет радиоэлектронных устройств на уровне электрических схем. Эти модели отражают внутреннюю структуру и физические особенности исходного СВЧприбора: на электрическом уровне описываются свойства активной структуры (сопротивления и емкости р–n-переходов, усилительные свойства и т. д.), а также паразитные емкости и индуктивности соединительных выводов, которые зависят от геометрических, технологических и других переменных.

Различают две разновидности компактных моделей:

 компактные электрические модели, описывающие зависимости параметров прибора только от электрических переменных (например, напряжений на выводах транзистора);

компактные физические модели, отражающие зависимости параметров прибора и от физических (технологических, геометрических и т. д.) переменных.

При этом рассматриваются модели *линейные* (малосигнальные) и *нелинейные*.

Линейная (малосигнальная) модель описывает поведение транзистора для одного (заданного) режима по постоянному току в предположении, что изменения переменного тока и напряжения в окрестности рабочей точки относительно небольшие, и элементы линейной модели не зависят от амплитуды входного переменного напряжения и от частоты.

Параметры элементов электрических схем в нелинейных моделях являются функциями напряжений, температуры и т. д. Эти зависимости аппроксимируются заранее выбранными аналитическими функциями, полученными или из физических представлений о работе прибора, или путем экспертного подбора соответствующего вида математических функций.

Поведенческие модели, построенные на основе формального сходства между поведением модели и объекта относительно внешних выводов. При моделировании СВЧ-транзисторов наиболее простой поведенческой моделью являются малосигнальные параметры транзистора как четырехполюсника – *S*-параметры. В этом случае СВЧ-транзистор (нелинейный прибор) в некотором диапазоне установившегося режима на заданной частоте заменяется линейным эквивалентным четырехполюсником. При работе в нелинейном режиме используются большесигнальные *S*-параметры.

Аппаратные модели, построенные в виде специализированного устройства, в котором информация о модели отражена в структуре электрических связей между его электрическими блоками. Данный тип моделей при разработке СВЧ- устройств практически не применяется.

2. ПРИБОРНО-ТЕХНОЛОГИЧЕСКАЯ САПР ТСАД ДЛЯ МОДЕЛИРОВАНИЯ ДИСКРЕТНОЙ ЭЛЕКТРОННОЙ КОМПОНЕНТНОЙ БАЗЫ

2.1. Состав приборно-технологической САПР ТСАД

САПР ISE TCAD (Sentaurus) [4, 9, 12, 17] предназначена для комплексного моделирования процесса разработки и оптимизации полупроводниковых технологий микро- и наноэлектроники. САПР ISE TCAD ориентирована на проектирование элементной компонентной базы и позволяет осуществлять сквозное моделирование как дискретных полупроводниковых приборов, так и интегральных полупроводниковых структур, обеспечивая расчет полного технологического маршрута изготовления полупроводникового прибора и последующий анализ статических, динамических и частотных электрических характеристик приборов в одно-, двух- или трехмерном приближении.

Моделирование технологии и электрофизических параметров электронной компонентной базы основано на фундаментальных уравнениях физики, решаемых методом конечных разностей с использованием расчетных сеток с адаптивным шагом.

Для организации проектов моделирования, управления другими компонентами САПР, в том числе для запуска процесса моделирования предназначена программа-оболочка **GENESIS**е с графическим пользовательским интерфейсом (рис. 2.1). Физико-технологическое моделирование полупроводниковых приборов реализуется с помощью программных модулей **DIOS, FLOOPS**. Для того чтобы абстрагироваться от физики конкретных технологических процессов и рассмотреть идеализированную модель, может, быть использован модуль структурного моделирования **DEVISE**. Для оптимизации сетки, построенной при моделировании структуры, используется модуль **MESH**. Визуальное отображение и обработка результатов моделирования полупроводниковых структур выполняется с привлечением программ **TECPLOT, INSPECT**.

Менеджер проектов содержит список ранее созданных проектов. Для создания нового проекта нужно на панели меню выбрать *file- > new- > new project* или на панели инструментов кликнуть мышкой по значку . После этого появится пустое окно GENESISe.

В рабочее пространство нового проекта необходимо добавить программы-компоненты САПР, для которых в далее создаются командные файлы. Для добавления программных модулей в проект нужно правой кнопкой мыши щелкнуть на надписи *No Tools*. В появившемся меню выбрать пункт *Add*, в запустившемся диалоговом блоке нажать на кнопку *Tools* и выбрать из набора пиктограмм требуемый модуль САПР TCAD. Для редактирования командных файлов программных модулей необходимо щелкнуть правой кнопкой мыши на пиктограмме соответствующей программы проекта и в появившемся меню выбрать *Edit Input -* > *Command*. В результате запустится текстовый редактор, с помощью которого можно создать либо редактировать командный файл.

Рис. 2.1. Общий вид проекта в GENESISe

Для запуска расчета проекта необходимо мышью выделить нужные узлы и нажать клавиши *CTRL*+*R*. Если узлы не выделены, то будет запущен расчет всего проекта. Статус узла (рассчитан, прерван, ошибка, не рассчитан, виртуальный и т. д.) обозначается цветовым кодом:

При нажатии правой кнопки мыши на расчетном узле появляется контекстное меню, наиболее часто используемые пункты которого: *run* (запустить расчет), *abort* (прервать выполнение), *view output* (просмотреть сообщения программы о ходе расчета), *visualize* (визуальное представление результатов расчетов).

2.2. Оптимизаторы расчетной сетки MDRAW и MESH

Для того чтобы моделировать электро-, теплофизические и другие параметры и характеристики рассчитанной в **DIOS** структуры, необходимо оптимизировать расчетную сетку **DIOS**. Для уменьшения времени последующих расчетов в **DESSIS** нужно значительно увеличить размеры ячеек сетки в неактивных областях, например, в области равномерно легированной подложки, а в активных областях и особенно вблизи p-n-переходов необходима значительно более мелкая сетка для более точного расчета параметров, но не чрезмерно мелкая, иначе системы уравнений перестают сходиться. Для этой цели чаще всего используются программы **MDRAW** и **MESH**.

Программа **MDRAW** включает в себя несколько частей: редактор границ, или редактор структур, редактор распределения примесей, а также оптимизатор сетки, который является одной из функций редактора распределения примесей. **MDRAW** позволяет создать структуру, не пользуясь моделированием технологии изготовления. Созданная в **MDRAW** структура имеет простейшие профили распределения примесей, например, гауссианы, а также другие упрощенные технологические характеристики.

Программа MESH аналогична оптимизатору сетки MDRAW, но не имеет графического интерфейса. Преимуществом MESH является возможность работать с одно-, дву- и трехмерными структурами, в то время как MDRAW работает только с одно- и двумерными. Синтаксис командного файла MESH и MDRAW одинаковый за исключением трехмерного случая. Алгоритмы оптимизации сетки этих программ отличаются тем, что сетка, полученная с помощью MDRAW, имеет более «квадратные» ячейки, а с помощью MESH – более «треугольные».

Запуск программ MDRAW и MESH удобнее производить в составе проекта в GENESISe. Помимо выбора режима запуска – графический или фоновый (для MDRAW) – необходимо установить с помощью контекстного меню вкладки *Edit mdraw Preferences* (рис. 2.2) использование файла границ от DIOS: *take «boundary» file from the preceeding tool*, а также использование командного файла, созданного пользователем: *take «commands» file from the user*.

Edit mdraw preferences
- Select execution mode
♦ Start in interactive mode
♦ Start in batch mode
Select input files
♦ Take "commands" file from the user
♦ Take "commands" file from the preceeding tool
Take "houndary" file from the user
 Take "boundary" file from the preceeding tool
,,,
<u>O</u> K <u>C</u> ancel
 Take "commands" file from the user Take "commands" file from the preceeding tool Take "boundary" file from the user Take "boundary" file from the preceeding tool

Рис. 2.2. Окно настройки параметров запуска программы MDRAW

В левом нижнем углу окна графического окна программы MDRAW (рис. 2.3) находится переключатель режимов работы «редактор структур – редактор распределения примесей» (Boundary – Doping). В режиме редактора структур активизируются кнопки добавления и удаления контактов: Add Contact и Delete Contact. Расположение контактов на структуре обозначается красными линиями. Выбранный контакт, название которого находится в списке контактов в поле под кнопкой **Delete Contact**, помечается жирной красной чертой. Для добавления контакта нужно нажать на кнопку Add Contact, задать название контакта, нажать кнопку Set/Unset Contact и, подведя курсор к нужной границе, щелкнуть левой кнопкой мыши. Если в списке контактов имеются странные области с неизвестными названиями, то необходимо проверить правильность командного файла DIOS. Возможно, например, при травлении поликремния или алюминия остались малые недотравленные области, либо координаты контакта заданы неверно. При правильной технологии и верном задании координат в командном файле **DIOS** все контакты в **MDRAW** отображаются правильно.

В режиме редактора распределения примесей вместо кнопок *Add Contact* и *Delete Contact* появляется кнопка *Build Mesh* (рис. 2.4).

Рис. 2.3. Графическое окно программы **MDRAW** (режим редактора структур)

Для оптимизации расчетной сетки нужно нажать на кнопку **Build** Mesh. Размеры ячеек сетки, расположение активных областей и функция оптимизации задаются в командном файле, указанном во вкладке **Edit** mdraw Preferences. После оптимизации сетки необходимо сохранить результаты, выбрав в меню File пункт Save All. Командный файл программ **MDRAW** и **MESH**, используемый для оптимизации расчетной сетки двумерной структуры, имеет следующую структуру:

Title "Заголовок"

#Описание областей, в которых будет оптимизироваться сетка, #с заданием основных характеристик сетки:

Definitions { Refinement "Default Region" #сетка для всей структуры (по умолчанию)

{MaxElementSize = (Xmax1 Ymax1) #максимальный размер #ячейки MinElementSize = (Xmin1 Ymin1) #минимальный размер #ячейки RefineFunction = MaxTransDiff(Variable = "DopingConcentration", Value

= 1.0)

#функция оптимизации под профиль распределения концентрации примесей) }

Refinement "Region 1" #область с другим размером ячейки сетки {MaxElementSize = (Xmax2 Ymax2) MinElementSize = (Xmin2 Ymin2) RefineFunction = MaxTransDiff(Variable = "DopingConcentration", Value

= 1.0) }

#.

. аналогичное описание остальных областей

#.

#Определение файлов структуры, для которой будет оптимизироваться сетка:

SubMesh "Structure"

{ Geofile = "@grid@" #файл сетки DIOS

Datafile = "@doping@" #файл распределения примесей DIOS } }

#Задание геометрического расположения объявленных ранее #областей:

Placements{Refinement "Default Region" #вся структура

{ Reference = "Default Region" }

Refinement "Region 1"#область с другим размером ячеек{Reference = "Region 1"

RefineWindow = rectangle [(Xleft Ytop), (Xright Ybottom)] #определение прямоугольной области путем задания координат верхнего левого и нижнего правого углов }

#.

#. описание расположения остальных областей

#.

#Структура, относительно которой задано расположение областей: Submesh "Structure" {Reference = "Structure" } } Это стандартный командный файл, в котором необходимо устанавливать минимальные и максимальные размеры ячеек, добавлять необходимое количество областей с шагом, отличным от заданного по умолчанию для всей структуры, а также определять геометрическое положение этих областей. У каждой области должно быть свое уникальное имя.

Рис. 2.4. Графическое окно программы **MDRAW** (режим редактора распределения примесей)

Результат выполнения командного файла — контекстное меню *Visualize* -> *.*dat files (TECPLOT)*.

Структура с оптимизированной сеткой записывается в 2 файла: *_mdr.grd и *_mdr.dat – для MDRAW, *_msh.grd и *_msh.dat – для MESH.

2.3. Программный модуль для моделирования технологических процессов микроэлектроники

При работе с программой **DIOS** необходимо набрать текстовый командный файл, содержащий последовательность команд для моделирования топологии и технологии проектируемого элемента.

Командный файл имеет следующую структуру:

Title(...) – наименование командного файла;

load(...) или substrate(...) – загрузка предварительно смоделированной или создание новой структуры;

replace(control(.....)) – управляющие команды, используемые для управления графическим выводом, сеткой и т. д.;

diffuse:(.....), implant:(.....) – задание глобальных параметров диффузии, имплантации и т.п.;

В данном разделе приведены основные команды **DIOS** в порядке их использования в командном файле с описанием важнейших параметров. Интерпретатор **DIOS** не чувствителен к регистру, т.е. diffuse и DiFFuSe – это одно и то же. Практически все команды можно сокращать, и при описании минимальное сокращение будет выделено заглавными буквами (DIF-Fuse – можно сократить diff). **DIOS** считает комментариями строки, начинающиеся со знаков ! и #. Как и все программы ISE TCAD, интерпретатор **DIOS** абсолютно не воспринимает русский алфавит.

TITLE('name_command_file') – заголовок командного файла. Эта команда должна быть первой в командном файле.

Пример: Title('nmos transistor')

LOAD(file='имя_файла') – данная команда применяется для загрузки ранее смоделированной структуры.

Пример: load(file='test')

GRID(x=(x_{min},x_{max}), y=(y_{min},y_{max}), nx=number) – определение прямоугольной области моделирования. Здесь x_{min}, x_{max}, y_{min}, y_{max} – координаты левой, правой, нижней и верхней границ области моделирования, по умолчанию в микронах. **DIOS** использует следующую систему координат: ось X направлена слева направо, ось Y направлена снизу вверх. Параметр пх задает количество ячеек начальной расчетной сетки. Вместо него можно использовать параметр dx, определяющий максимальный размер ячейки вдоль оси x. Можно также использовать аналогичные параметры ny и dy.

Примеры: Grid(x=(0, 50), y=(-100, 0), nx=10) Grid(x=(-10, 10), y=(-200, 5), dx=50nm) SUBStrate(ORIentation=100, ELEMent=*mun_примеси*, CONCentration = концентрация_примеси, ysubs=number) – определение свойств кремниевой подложки: ORIentation задает кристаллографическую ориентацию подложки 100, 110 или 111; ELEMent – тип легирующей примеси подложки (B, P, Sb, As и др.); CONCentration – концентрация легирующей примеси в подложке (по умолчанию в см⁻³), при этом вместо концентрации примеси можно задать удельное сопротивление rho (по умолчанию в Ом·см); ysubs – задает координату у верхней границы подложки.

Примеры:

SUBStrate(ORIentation=100,ELEMent=B,CONCentration=1.43e15, ysubs=0.0)

SUBStrate(ORIentation=110,ELEMent=P,rho=10, ysubs=5.0)

REPLace(Control(NGRAphic=number)) – одно из возможных применений команды Control. С помощью этой команды, имеющей большое количество параметров, осуществляется управление ходом моделирования, например, адаптацией расчетной сетки. Параметры Control задаются с помощью команды Replace в любой точке командного файла после команды Title. В приведенном виде команда запускает графический режим работы DIOS. Параметр NGRAphic задает число шагов, через которое содержимое графического окна будет обновляться. Для наглядности целесообразно выбрать ngra=1.

GRAPHic(..., Plot) – команда открывает графическое окно DIOS. Если не использовать эту команду, графическое окно все же будет запущено автоматически при условии, что была задана команда Replace (Control(NGRAphic=number)). Параметр Plot, обновляющий содержимое графического окна, обязательный, без него команда не будет работать.

Основные параметры:

SPEcies – задание типа примеси, распределение концентрации которой будет отображаться;

Triangle=On/Off – включение/выключение отображения сетки;

SCale(XLeft,XRight,YBottom,YTop) – определение размеров прямоугольной области просмотра;

Zscale – задает список значений для изолиний в графическом окне.

Примеры: Graphic(SCale(XLeft=0.1, XR=0.2, YTop=0, YBot=-1), Plot) Graphic(Zscale=(1e15, 1e16, 1e17, 1e18), SPec(BTot), Plot) Graphic(Triangle=on, Plot)

Comment('*фраза***')** – задание нового заголовка графического окна. Эту команду удобно использовать для комментирования хода моделирования.

Break – приостановка расчета. Возобновление осуществляется кноп-кой Go графического окна.

IMPLantation(ELEMent=*тип_примеси*, ENergy=number, Dose=*number*) – команда для моделирования ионной имплантации. Обязательные параметры:

ELEMent – определяет тип примеси, используемой для легирования;

ENergy – задание энергии имплантируемых ионов (по умолчанию в кэВ);

Dose – доза имплантации (по умолчанию см⁻², для использования дозы в мкКл/см² используется выражение *number/1.6e-19*).

Дополнительно используются следующие параметры:

Tilt – наклон пучка ионов относительно перпендикуляра к поверхности подложки (по умолчанию 7 градусов);

ROTation – угол поворота подложки при HALO-имплантации, т.е. при вращении подложки относительно оси, перпендикулярной поверхности подложки. Имплантация при этом производится наклонным пучком;

FUNCtion – функция распределения концентрации имплантированных ионов в главном направлении перпендикулярно поверхности подложки. Наиболее часто используемые функции распределения примесей:

Gauss – гауссиана (по умолчанию);

GK – гауссиана с нелинейным экспоненциальным хвостом;

PEarson – распределение Пирсон 4;

Р4S – распределение Пирсон 4 с линейным экспоненциальным хвостом;

Р4К – распределение Пирсон 4 с нелинейным экспоненциальным хвостом;

CrystalTrim – распределение, рассчитанное по методу Монте-Карло.

LateralFunction – функция распределения концентрации имплантированных ионов в латеральном направлении (параллельно поверхности подложки), можно использовать только две функции – Gauss (по умолчанию) и PEarson.

Примеры: implantation(element=B, dose=1e15, energy=60)

impl(elem=P, dose=100/1.6e-19, en=90, tilt=0, func=pe, lateralfunction=pe)

Возможно глобальное задание параметров имплантации, например:

impl:(func=p4k, lateralfunction=pe).

При этом для всех нижеследующих команд имплантации будут использоваться заданные параметры как параметры по умолчанию, если в команде не заданы явно другие параметры; DIFFusion(TEmperature=number, Time=number) – данная команда используется для моделирования всех высокотемпературных операций: диффузии примесей, окисления, эпитаксии. Основные параметры:

ТЕтрегаture – температура операции, по умолчанию в градусах Цельсия, возможно задание начальной и конечной температуры (temp1, temp2) или списка температур через заданные интервалы времени (temp1, ..., tempN);

Time – время операции, по умолчанию в минутах, а также возможно задание списка интервалов времени (t1, t2, ..., t(N-1));

TempRate – скорость изменения температуры (в К/мин);

ATMOsphere – определение атмосферы, в которой проводится операция; чаще всего используются:

N2 – инертная атмосфера (по умолчанию);

Н2О – окисление во влажном кислороде;

О2 – окисление в сухом кислороде;

HCL – окисление с добавкой хлороводорода (используется совместно с H2O или O2);

EPI – эпитаксиальное наращивание;

Flow – при использовании потока газов (по умолчанию в л/мин);

Concentration – определение концентрации примеси в газе при моделировании диффузии из газовой фазы или в эпитаксиальном слое при моделировании эпитаксиального наращивания;

ELEMent – определение типа примеси при эпитаксиальном наращивании или диффузии;

GrowthRate – скорость наращивания эпитаксиального слоя (в нм/мин);

ModDiff – задание модели диффузии: PairDiffusion, SemiCoupled, LooselyCoupled, Equilibrium, Conventional; модели перечислены в порядке уменьшения количества учитываемых эффектов и ухудшения точности. Возможно также задание моделей кластеризации бора и фосфора: Si:(B:(ModClust=Equilibrium)), Si:(P:(ModClust=Equilibrium)). Здесь Equilibrium – это одна из моделей кластеризации, удовлетворительная по точности и затратам времени на расчет.

Аналогично параметрам команды IMPLantation моделирования ионной имплантации, можно задать глобальные параметры команды diffusion:

diff:(moddiff=pairdiffusion, Si:(B:(ModClust=Equilibrium)), Si:(P:(ModClust=Equilibrium)))

Примеры использования команды diffusion: diff(temperature=1000, time=10) diff(te=900degC, time=35s, atmo=H2O) diff(time=(10,20,5),te=(900,950,1100,1000),flow(H2O=1, HCL=2)) diff(time=20, te=(1000, 1100), moddiff=semicoupled) diff(time=20,atmo=epi,growthrate=300,te=1190,elem=B, conc=2e15) MASK(MATerial=*mun_материала*, THickness=*number*, XLeft=*number*, XRight=*number*) – команда для моделирования фотолитографии. В качестве материала маски обычно задается фоторезист (resist), хотя можно использовать и другие материалы. Слой материала маски толщиной THickness наносится между координатами XLeft и XRight (все по умолчанию в микронах). Возможны также некоторые другие параметры.

Например:

mask(material=resist, thickness=2, xleft=0, xright=10)

mask(mat=Al, th=1000nm, xl=-10, xr=2.5)

MASK(MATerial=POLY, ELEM=P, CONC=3e19, THick=180, XLeft=0.2, XRight=0.4)

DEPOsit(MATerial=*mun_материала*, THickness=*number*) – команда моделирования осаждения какого-либо материала.

Основные параметры:

MATerial – тип осаждаемого материала: Si, po (поликремний), ni (или Si3N4), ox (или SiO2), Al и др.;

THickness – толщина осаждаемого материала, по умолчанию в мкм; ELEMent – тип примеси, которой легирован осаждаемый материал; CONCentration – концентрация примеси в осаждаемом материале. Примеры: deposit(material=ox, thickness=3)

depo(material=al, thickness=1000nm)

depo(material=po, thickness=450nm, elem=P, conc=1.23e18)

ETCHing(MATerial=*тип_материала*) – команда моделирования травления. По умолчанию травление изотропное. Травится слой, контактирующий с газовой фазой. Если не указана толщина удаляемого слоя, то удаляется весь заданный материал, контактирующий с газовой фазой. Основные параметры:

MATerial – материал, который будет травиться;

REmove – толщина стравливаемого слоя, по умолчанию в мкм;

STOP – указание границы раздела, при достижении которой на какомлибо участке поверхности травление останавливается (sigas, siox и др.);

Rate – задание типа и скорости травления (по умолчанию скорость травления в нм/мин); тип – изотропное или анизотропное (ISOtropic или ANISOtropic).

Примеры: etching(material=resist) etch(mat=ox, stop=(siox), rate(anisotropic=100)) etch(mat=al, remove=400nm, rate(aniso=100, iso=10)) REFLECT(...) – данная команда используется для отражения структуры относительно заданной плоскости. Обычно используется для получения полной структуры в случае моделирования половины симметричной структуры. Основные параметры:

reflect – задание х-координаты вертикальной плоскости отражения (по умолчанию в мкм);

WINdow – задание новых координат левой, правой, верхней и нижней (left, right, top, bottom) границ области моделирования, т.е. обрезка области моделирования.

Примеры: reflect(reflect=0.0) reflect(window(left=-4)) reflect(window(left=-10, right=20, top=15, bottom=-2))

1D(....) – команда для сохранения одномерных профилей распределения концентраций примесей. Основные параметры:

file – имя файла, в котором сохраняется профиль;

format – формат сохраняемого файла (по умолчанию с расширением *.plx);

SPEcies – список примесей, для которых будет сохранен концентрационный профиль (названия примесей как в графическом окне);

XSECTion – координата оси х, через которую будет проведено вертикальное сечение;

YSECTion – координата оси у, через которую будет проведено горизонтальное сечение;

FACtor – множитель, определяющий направление и размерность шкалы координатной оси одномерного профиля (удобно использовать – 1);

RS – расчет слоевых сопротивлений пересекаемых сечением слоев. Результат при этом запишется в файл протокола, для просмотра в GENESISe – *view output*.

Примеры:

1d(file=gate, species(netactive), ysection(7.9), factor=-1) 1d(file=test,format=plt,spe(pactive,bactive),xsect(5.0),fac=-1) 1d(rs=on, xsect(0.0))

SAVE(file=*uмя_файла*) – команда для сохранения полученной в результате моделирования структуры. По умолчанию, если не указан формат сохранения, результаты сохраняются в файл с расширением *_dio.dmp – это собственный формат **DIOS**. Файлы в этом формате можно использовать для дальнейшего моделирования в **DIOS**. По умолчанию файлы сжимаются с помощью архиватора gzip, поэтому обычно добавляется расширение *.gz. Чтобы использовать рассчитанную виртуальную структуру для моделирования электрофизических и других параметров, ее нужно сохранить в формате **MDRAW**:

```
save(file=structure, type=mdraw, species(.....),
contacts( contact1(name=con1, x1, y1),
```

•••••

```
contactN(name=conN, xN, yN)))
```

Здесь:

type – определяет формат сохранения;

species – указывает, для каких примесей распределения концентраций будут включены в сохраняемую структуру;

contacts – задание контактных областей путем перечисления с указанием названий контактов и координат любой точки в пределах материала контакта. Для использования нижней границы подложки в качестве контакта вместо задания координат используется location=bottom.

В качестве имени файла лучше всего использовать стандартное имя из GENESISe n@node@, которое обозначает номер узла в GENESISe. При сохранении в формате MDRAW создаются 4 файла:

*_mdr.cmd – простейший командный файл для MDRAW;

*_mdr.bnd – описание границ областей;

*_dio.grd[.gz] – файл, содержащий расчетную сетку DIOS;

*_dio.dat[.gz] – распределение примесей, привязанное к расчетной сет-

ке.

Примеры: save(file=final structure)

Save(File='n@node@', Type=Mdraw, species(netactive,bactive, pac-

tive),

Contacts(contact1(name='gate', 13.25, 8.5) contact2(name='drain', 20.0, 8.0) contact3(name='source', 0.0, 8.0) contact4(name='substrate', location=bottom))

Файл *.dmp можно просмотреть только с помощью **DIOS**, а пару файлов *.grd + *.dat можно просмотреть в **TECPLOT**. При этом нужно учитывать, что в **TECPLOT** используется система координат, в которой ось Y направлена вниз.

2.4. Программный модуль для моделирования структуры полупроводниковых приборов

Командные файлы для программы **DEVISE** пишутся на специальном языке программирования, основанном на логическом языке Scheme. Рассмотрим подробнее наиболее часто используемые команды.

Для задания переменных используется команда define:

(define CONCENTRATION 1e15)

(define LGATE @Length_gate@)

где CONCENTRATION и LGATE – имена переменных; *1e15* – статическое значение переменной; @Length_gate@ – динамический параметр, передаваемый в **DEVISE** программой **GENESIS**e.

Для вычисления конструктивно-технологических параметров используются встроенные в язык Scheme алгебраические операторы, использующие специальный формат записи операндов:

(define CONCENTRATION (/ 1 (* 1.6e-19 (* MOBILITY @Rho@))))

В данном примере вычисляется концентрация примеси CONCEN-TRATION по известным подвижности носителей MOBILITY и удельному

сопротивлению Rho по формуле
$$N = \frac{1}{e\mu\rho}$$
.

Элементы конструкции модели прибора создаются из следующих основных геометрических примитивов: прямоугольник, многоугольник, прямоугольный параллелепипед (для трехмерных моделей). Имеется возможность использовать цилиндры, сферы, пирамиды, торы, однако потребность в данных элементах возникает редко. Размер и расположение прямоугольников и параллелепипедов задается путем указания координат двух диагональных углов. Для многоугольников необходимо указать координаты каждого угла. Для построения элементов используются следующие команды:

создание прямоугольника:

(isegeo:create-rectangle (position x1 y1 z1) (position x2 y2 z2) "Silicon" "Subctrate")

создание многоугольника:

(isegeo:create-polygon (list (position x1 y1 z1) (position x2 y2 z2) (position x3 y3 z3)

(position xn yn zn)) "PolySi" "Gate")

создание прямоугольного параллелепипеда:

(isegeo:create-cuboid (position x1 y1 z1) (position x2 y2 z2) "Aluminum" "Metall") В данных командах после указания координат задается тип материала создаваемого объекта ("Silicon"), далее указывается названиеидентификатор объекта ("Substrate").

Данные элементарные объекты можно модифицировать – срезать или скруглять углы, передвигать стороны и грани, и др. Наиболее часто используется команды скругления и срезания углов:

(isegeo:fillet-2d угол радиус)

(isegeo:chamfer-2d угол дистанция_среза)

Если вновь созданный объект пересекается с ранее созданными, то он, в зависимости от установленного командой (isegeo:set-default-boolean "*Режим_пересечения*") режима, объединяется с ранее созданными (режим "*AB*"), замещает ранее созданные объекты (режим "*ABA*"), либо уменьшается до пределов границ других объектов (режим "*BAB*").

После завершения описания конструктивных элементов модели прибора, с помощью следующих двух команд указываются электрические контакты модели:

(isegeo:define-contact-set "Контакт_1" 1.0 (color:rgb 0 1 0) "##") (isegeo:define-2d-contact Контактная_граница "Контакт_1") Далее с помощью команды (iseio:save-dfise-bnd "all" "@boundary/o@")

Сформированные элементы конструкции сохраняются в т.н. граничный файл, содержащий описание координат границ всех конструктивных элементов модели.

При создании структурных моделей MOS-транзисторов чаще всего используются 2 типа распределения примесей: равномерное и по закону Гаусса.

Равномерное распределение примесей задается с помощью следующих команд:

(isedr:define-constant-profile "Идентификатор_профиля"

"Наименование_примеси" концентрация)

(isedr:define-constant-profile-region "Идентификатор_размещения"

"Идентификатор_ профиля" "Идентификатор_конструктивного_элемента")

При задании распределения примеси по закону Гаусса необходимо указать параметры гауссианы:

(isedr:define-gaussian-profile "Идентификатор_профиля" " Наименование_примеси "

"PeakPos" Положение_максимума "PeakVal" Значение_в_максимуме "ValueAtDepth" Значение_на_расстоянии_X "Depth" Расстояние_X

"Gauss" "*Factor*" 0.8)

а также локализацию профиля в модели прибора:

(isedr:define-refinement-window "Идентификатор_локализации" "Тип области локализации" (position x1 y1 z1) (position x2 y2 z2))

(isedr:define-analytical-profile-placement "Идентификатор_размещения" "Идентификатор_профиля" "Идентификатор_размещения" "Symm" "NoReplace" "Eval")

Тип области локализации может быть линия (Line), прямоугольник (Rectangle) или прямоугольный параллелепипед (Cuboid).

2.5. Программный модуль для моделирования электрофизических параметров полупроводниковых структур

DESSIS – программа для приборного и схемного моделирования одно-, двух- и трехмерных полупроводниковых структур. Она объединяет в себе современные физические модели и численные методы для моделирования большинства существующих на сегодняшний день полупроводниковых структур, начиная с субмикронных MOS-транзисторов и заканчивая гетероструктурами и лазерами. Для этой цели программа содержит множество моделей процессов, происходящих в полупроводниковых приборах: дрейфовая диффузия, термодинамические эффекты, гидродинамические модели и многие другие. **DESSIS** также включает в себя большой набор средств для решения нелинейных уравнений, поддерживает Spice-модели.

DESSIS моделирует работу полупроводниковых приборов, основываясь на уравнениях физики полупроводников, описывающих механизмы проводимости и распределения носителей. Реальный полупроводниковый прибор представляется в **DESSIS** как «виртуальный прибор», свойства которого дискретизированы по узлам неоднородной сетки. Следовательно, непрерывные функции, такие как профили легирования, разбиты на конечное число дискретных точек, и значения этих функций между узлами сетки могут быть получены путем интерполяции. Граничные и начальные условия задаются путем указания напряжений, токов, зарядов, температур и других параметров на электрических и тепловых контактах.

Для моделирования в **DESSIS** используются структуры, созданные с помощью **DIOS**, **MDRAW**, **MESH** и др. Структура должна быть с оптимизированной расчетной сеткой. **DESSIS** не имеет графического интерфейса и управляется только командным файлом.

Командный файл состоит из набора секций, порядок расположения которых обычно не имеет значения. **DESSIS** не чувствителен к регистру. Строки, начинающиеся со знаков # и *, считаются комментариями. Простейший командный файл имеет следующую структуру:

*Определение файлов моделируемой структуры и выходных *файлов:

```
File{ grid = "@grid@" doping = "@doping@" plot = "@dat@"
  current = "@plot@" output = "@log@" }
```

*Задание электрических контактов и начальных условий для них: Electrode{ {name = "electrode1" voltage = V1} {name = "electrode2" current = I1}

. }

*Задание термических контактов и начальных условий для них: Termode { {name = "termode1" temperature = T1}

. . }

*Задание моделей физических процессов, используемых в расчете: Physics{ . . }

*Определение математических методов решения уравнений: Math{ . . }

*Описание параметров и характеристик, которые будут рассчитываться:

Plot{ . . }

*Составление и решение необходимых систем уравнений: Solve {

*Получение начального решения из начальных условий: Coupled{ Poisson Electron Hole }

*Решение системы уравнений при переменных параметрах *на электродах или термодах (или при других условиях): QuasiStationary(InitialStep = Step0 MaxStep = MaxStep MinStep =

MinStep

Goal { name = "*Haumehoвahue_контакта*" parameter = *Peзультирую*щее_значение })

{ Coupled {Hole Electron Poisson} } }

Основные параметры секций командного файла **DESSIS** имеют следующие назначение и структуру: File{...} – в данной секции определяются входные и выходные файлы DESSIS. Входные файлы – это файл сетки *.grd и файл распределения примесей *.dat моделируемой полупроводниковой структуры. Выходные файлы: файл *_des.dat, содержащий распределения различных параметров на входной сетке; файл *_des.plt, содержащий различные зависимости, представляемые в виде графиков; файл протокола *_des.log. При использовании DESSIS в составе проекта GENESISe со стандартными именами файлов (например, n3_mdr.grd, n4_des.dat и т. д.) удобно используемые в DESSIS файлы обозначать следующим образом:

grid = "@grid@" doping = "@doping@" plot = "@dat@" current = "@plot@" output = "@log@"

При таком определении будут автоматически подставлены файлы моделируемой структуры и созданы выходные файлы со стандартными именами. При использовании нестандартных имен необходимо явно указать имена файлов, например:

grid = "nmos_mdr.grd" doping = "nmos_mdr.dat" plot = "output_des.dat" current = "output_des.plt" output = "output_des.log"

Файлы с расширением *_des.plt можно просматривать в программе INSPECT, а файл *_des.dat вместе с соответствующим ему файлом *_mdr.grd – в программе TECPLOT;

Electrode{...} – эта секция служит для определения электрических контактов моделируемой структуры и задания начальных параметров на них. Данные параметры служат электрическими граничными условиями при решении систем уравнений, описывающих электрофизические свойства моделируемого прибора. Названия электродов соответствуют названиям, данным в программе **DIOS** или **MDRAW**. Контакты, которые не описаны в данной секции, игнорируются **DESSIS**. В качестве начальных параметров на электродах могут быть заданы: напряжение (Voltage, B), ток (Current, A), заряд (Charge, Kл) и другие параметры. Можно также указать, что к электроду подключен резистор (Resistor, Oм). При задании затвора MOS-транзистора необходимо указывать разность работ выхода между металлом затвора и кремнием (barrier, эB). При использовании затвора из сильноле-гированного поликремния нужно указать тип проводимости поликремния (material = "PolySi"(N)).

Например: Electrode{ {name = "source" voltage = 0.0} {name = "gate" voltage = -2.0 material = "PolySi"(N)} {name = "substrate" current = 1e-3} {name = "drain" voltage = 2.0 resistor = 100} {name = "gate1" voltage = 5.0 Barrier=-0.55} }

Termode{...} – секция для определения термических контактов. Если при расчете не учитываются термодинамические характеристики модели, то данная секция не используется. Секция по назначению и структуре аналогична секции electrode{...}. В качестве начальных параметров чаще всего используются температура (temperature, K), тепловое сопротивление (SurfaceResistance, см²·K/Bт), коэффициент теплопроводности – величина, обратная тепловому сопротивлению (SurfaceConductance) и др.

Например:

Thermode{{ Name = "substrate" Temperature = 300 } {name = "surface" Temperature = 310 SurfaceResistance = 0.1}}

Physics{...} – секция для описания используемых в расчете физических моделей. Основные параметры:

AreaFactor = *number* – задает толщину [мкм] двумерной структуры, преобразуя ее в трехмерную, по умолчанию 1 мкм;

Temperature = *number* – температура [К], при которой находится виртуальная структура, по умолчанию 300 К;

EffectiveIntrinsicDensity(BandGapNarrowing(Slotboom)) – модель сужения запрещенной зоны кремния, по умолчанию учет этого эффекта включен. Наиболее часто используется модель Slotboom, которую можно задавать в виде EffectiveIntrinsicDensity(Slotboom));

Hydrodynamic – включение гидродинамической транспортной модели;

Mobility(...) – задание различных моделей, учитывающих изменение подвижности носителей под действием различных факторов. Из них наиболее часто используются следующие:

DopingDependence(Masetti) – модели, учитывающие зависимость подвижности носителей от концентрации примесей, для кремния по умолчанию используется модель Masetti;

HighFieldSaturation(GradQuasiFermi) – модели насыщения дрейфовой скорости носителей в сильном электрическом поле, по умолчанию используется модель GradQuasiFermi, также часто используется модель Eparallel, учитывающая параллельное поверхности подложки электрическое поле;

NormalElectricField или Enormal – модель, учитывающая влияние нормального к поверхности подложки электрического поля;

CarrierCarrierScattering(ConwellWeisskopf) – модели, учитывающие рассеивание носителей на других носителях; по умолчанию используется модель ConwellWeisskopf;

Recombination(...) – используемые модели генерации-рекомбинации носителей, по умолчанию все модели отключены. Наиболее часто используются следующие модели:

SRH(*models*) – рекомбинация Шокли – Рида – Холла, *models* – учет зависимости от концентрации примесей (DopingDependence), от температуры (TempDependence), учет туннельного эффекта (Tunneling) и др.;

CDL(*models*) – рекомбинация на парных дефектных энергетических уровнях, *models* – те же, что и в рекомбинации ШРХ;

Auger – рекомбинация Оже;

Band2Band – генерация носителей путем туннельного перехода зоназона;

Avalanche(VanOverstraeten GradQuasiFermi) – лавинная генерация электронно-дырочных пар (или ударная ионизация); модель по умолчанию VanOverstraeten; модель напряженности внутреннего электрического поля GradQuasiFermi (по умолчанию) либо Eparallel;

SurfaceSRH – поверхностная рекомбинация ШРХ;

Thermodynamic – включение учета термодинамических характеристик моделируемой структуры, например, для учета саморазогрева;

Charge(Concentration = number) – концентрация зарядов в оксиде кремния, см⁻³, по умолчанию 0 см^{-3} .

Physics(MaterialInterface="Oxide/Silicon") {charge(surfconc=Nss)} – таким образом можно задать концентрацию зарядов на границе раздела оксид-кремний, см⁻³. Подобным образом задаются и другие параметры и модели на границах раздела, для отдельных материалов, областей и т. д. Следует обратить внимание на то, что данные команды не включаются в основную секцию Physics{ }.

Для многих задач достаточно следующих моделей физических процессов: Physics{ AreaFactor = number Temperature = *number* EffectiveIntrinsicDensity(Slotboom) Mobility(DopingDependence HighFieldSaturation Enormal) Recombination(SRH(DopingDependence) CDL(DopingDependence) Band2Band Avalanche) Charge(Concentration = *number*) } Physics(MaterialInterface="Oxide/Silicon"){charge(surfconc=Nss)}

Math{...} – секция, в которой описываются используемые для решения уравнений математические методы. Наиболее часто используемые параметры:

Cylindrical – указывает, что для моделируемой структуры необходимо использовать цилиндрическую систему координат, это полезно при моделировании диодных и других простых двумерных структур;

Derivatives – использование аналитических производных подвижности носителей в решаемых уравнениях. По умолчанию этот параметр включен, для его выключения нужно указать Derivatives;

AvalDerivatives – использование аналитических производных в уравнениях ударной ионизации. По умолчанию этот параметр включен, для его выключения нужно указать AvalDerivatives;

NewDiscretization – использование улучшенной схемы дискретизации уравнений. По умолчанию этот параметр включен, для его выключения нужно указать NewDiscretization;

RelErrControl – включение относительного критерия остановки итерационного процесса при достижении необходимой точности (по умолчанию включен); задание RellErrControl включает абсолютный критерий, при этом необходимо задать параметр Digits=*number* (по умолчанию Digits = 5), означающий число знаков после запятой в критерии точности;

Iterations – задание максимального количества итераций на каждом шаге, по умолчанию Iterations=50. Если уравнения не сходятся после заданного количества итераций, то шаг уменьшается, и процедура повторяется;

Extrapolate – использование экстраполяции при итерационном решении уравнений. По умолчанию параметр выключен. Рекомендуется его включать для улучшения сходимости уравнений;

Smooth – сглаживание результатов, полученных на соседних шагах, используется при плохой сходимости.

Для большинства случаев достаточно явно заданных параметров:

Math{ RelErrControl Iterations = 20 Extrapolate }

Plot{...} – определение физических величин, распределения которых будут рассчитаны и занесены в файл *_des.dat. Назначение большинства из них понятно из названия. Вычислены будут только те величины, расчет которых возможен на основе выбранных моделей физических процессов. Наиболее часто используемые величины:

AcceptorConcentration – концентрация акцепторных примесей;

AntimonyActiveConcentration – концентрация электрически активной сурьмы;

AntimonyConcentration – концентрация сурьмы;

AntimonyPlusConcentration – концентрация положительных ионов сурьмы;

ArsenicActiveConcentration – концентрация электрически активного мышьяка;

ArsenicConcentration – концентрация мышьяка;

ArsenicPlusConcentration – концентрация положительных ионов мышьяка;

AugerRecombination – скорость рекомбинации Оже;

AvalancheGeneration – скорость лавинной генерации носителей;

Band2BandGeneration - скорость генерации носителей путем туннельного перехода зона-зона;

BandGap – ширина запрещенной зоны;

BandgapNarrowing – сужение запрещенной зоны;

BoronActiveConcentration - концентрация электрически активного бора;

BoronConcentration – концентрация бора;

BoronMinusConcentration – концентрация отрицательных ионов бора; BuiltinPotential – встроенный электрический потенциал;

CDLRecombination – скорость рекомбинации на парных уровнях дефектов;

ConductionBandEnergy – энергия на дне зоны проводимости;

DielectricConstant – диэлектрическая проницаемость;

DonorConcentration – концентрация доноров;

DopingConcentration – разность концентрации донорных и акцепторных примесей;

eCurrentDensity – плотность электронного тока;

eDensity – концентрация электронов;

eDirectTunnelCurrent – плотность туннельного электронного тока;

eDriftVelocity – дрейфовая скорость электронов;

EffectiveBandGap – эффективная ширина запрещенной зоны;

EffectiveIntrinsicDensity – эффективная собственная концентрация носителей;

eGradQuasiFermi – градиент электронного квазиуровня Ферми;

eQuasiFermiPotential – электронный квазипотенциал Ферми;

ElectricField – напряженность электрического поля;

ElectronAffinity – электронное сродство;

ElectrostaticPotential – электростатический потенциал;

eLifetime – время жизни электрнов;

eMobility – подвижность электронов;

eSaturationVelocity – скорость электронов в области насыщения;

eTemperature – температура электронов;

eVelocity – скорость электронов;

hCurrentDensity – плотность дырочного тока;

hDensity – концентрация дырок;

hDirectTunnelCurrent – плотность туннельного дырочного тока;

hDriftVelocity – дрейфовая скорость дырок;

hGradQuasiFermi – градиент дырочного квазиуровня Ферми;

hLifetime – время жизни дырок;

hMobility – подвижность дырок;

HotElectronInj – инжекция горячих электронов;

HotHoleInj – инжекция горячих дырок;

hQuasiFermiPotential – дырочный квазипотенциал Ферми;

hSaturationVelocity – скорость дырок в области насыщения;

hTemperature – температура дырок;

hVelocity – скорость дырок;

LatticeTemperature – температура;

PhosphorusActiveConcentration – концентрация электрически активного фосфора;

PhosphorusConcentration – концентрация фосфора;

PhosphorusPlusConcentration – концентрация положительных ионов фосфора;

QuasiFermiPotential – квазипотенциал Ферми;

SpaceCharge – пространственный заряд;

SRHRecombination – скорость рекомбинации Шокли – Рида – Холла; ThermalConductivity – теплопроводность;

ThomsonHeat – скорость выделения теплоты в результате эффекта Томсона;

TotalConcentration – полная концентрация примесей;

TotalCurrentDensity – полная плотность тока;

TotalHeat – полная скорость выделения теплоты;

TotalRecombination – полная скорость рекомбинации.

Пример:

Plot{ AcceptorConcentration DonorConcentration BoronConcentration

lion

PhosphorusConcentration TotalConcentration DopingConcentration BandGap

BandgapNarrowing BuiltinPotential ElectrostaticPotential Space-Charge ElectricField

SRHRecombination CDLRecombination AvalancheGeneration

Band2BandGeneration TotalRecombination eDensity eMobility eCurrentDensity

hDensity hMobility hCurrentDensity TotalCurrentDensity Lattice-Temperature }

Solve{...} – секция для задания используемых уравнений и условий их решения. В данной секции важен порядок следования команд. Обычно используется следующая схема решения: получение начального решения, затем циклическое изменение с определенным шагом какого-либо начального пара-

метра и расчет уравнений в режиме установившегося равновесия (квазистационарный режим). Для решения уравнений обычно используется алгоритм Ньютона. Начальное решение чаще всего формируется за один или два шага. Например, можно на первом шаге решить уравнение Пуассона с использованием начальных условий, заданных в секции Electrode{...}. На втором шаге решается система уравнений, состоящая из уравнения Пуассона и уравнений непрерывностей для электронов и дырок, в которой в качестве начальных условий используются результаты, полученные на первом шаге:

Poisson

Coupled{ Poisson Electron Hole }

Такой подход обычно обеспечивает хорошую сходимость. Можно на первом же шаге решать систему уравнений, тогда отдельное решение уравнения Пуассона и второй шаг не нужны. При учете термодинамических свойств моделируемого прибора рекомендуется в начальное решение не включать уравнения термодинамики для обеспечения лучшей сходимости.

После расчета начального решения обычно используется следующая процедура: с определенным шагом на заданном электроде (термоде) изменяется начальный параметр, для каждого шага рассчитывается система уравнений coupled{Poisson Electron Hole} или coupled{Poisson Electron Hole Temperature} при учете термодинамических свойств) в квазистационарных условиях, используя новое значение параметра вместо исходного. В качестве начального используется решение, полученное на предыдущем шаге. Если система уравнений не сходится, то шаг изменения параметра уменьшается, и система рассчитывается заново. После успешного решения шаг увеличивается. Процедура повторяется, пока параметр на электроде (термоде) не достигнет заданного значения. В случае систематической расходимости уравнений расчет прерывается. Параметры изменения шага: начальный InitialStep, минимальный MinStep и максимальный MaxStep шаги, а также коэффициенты увеличения Increment и уменьшения Decrement шага.

Например: QuasiStationary(InitialStep = 1e-3 MaxStep = 1e-2 MinStep = 1e-7

Goal{ name = "gate" voltage = 5 })
{ Coupled{Hole Electron Poisson} }

В данном примере напряжение на электроде gate изменяется от начального до 5 В, шаг изменения и пределы его вариаций заданы параметрами InitialStep, MaxStep и MinStep. Increment и Decrement установлены по умолчанию (оба равны 2). Параметры на остальных электродах остаются неизменными. На каждом шаге решается система, состоящая из уравнений Пуассона, непрерывности для электронов и дырок.

Примеры команды Solve{...}:

а) без учета термодинамических характеристик:

Solve{ Poisson Coupled{Poisson Electron Hole}

QuasiStationary(InitialStep = 0.001 MaxStep = 0.01 MinStep = 1e-7

Goal{ name = "gate" voltage = 5 })

{ Coupled{Hole Electron Poisson} } }

б) с учетом термодинамических характеристик (например, при учете саморазогрева):

Solve{ Coupled {Poisson Electron Hole}

QuasiStationary(InitialStep = 0.01 MaxStep = 0.1 MinStep = 1e-5 Goal{ name = "drain" voltage = 30 })

{Coupled{Hole Electron Poisson Temperature} } }

В команде Solve{ } может быть несколько команд Goal{ }. После выполнения команды Solve{ } на использованном в команде Goal{ } электроде (термоде) остается то значение параметра, которое было последним в итерационной процедуре. В выходной файл *_des.dat записываются указанные в секции Plot{ } величины, рассчитанные при этом последнем значении параметра на электроде. В файл *_des.plt записываются данные по мере изменения значения рассматриваемого параметра. Поэтому различные распределения из файла *_des.dat в TECPLOT можно просмотреть только при фиксированном режиме моделируемого прибора. Характеристики из файла *_des.plt можно просмотреть в INSPECT во всем диапазоне изменения рассматриваемого параметра – это различные вольтамперные и другие характеристики.

2.6. Визуализация результатов численных экспериментов

Для просмотра результатов расчета узлов необходимо нажать правой кнопкой мыши на требуемом узле и в контекстном меню выбрать пункт *vi-sualize-* > . В подменю можно выбрать *.*plt files* (INSPECT) для просмотра данных в виде графиков либо *.*dat files* (TECPLOT) для визуального представления распределений концентрации примесей и электрофизических величин в моделируемой структуры.

Программа **INSPECT** служит для построения и анализа графиков. Имеется возможность управления процессом построения и анализа графиков с помощью командного файла. Графическое окно программы **INSPECT** показано на рис. 2.5.

Рис. 2.5. Графическое окно программы **INSPECT**: 1 – строка меню; 2 – строка управления; 3 – список загруженных файлов; 4 – область выбора электрических и термических контактов, времени; 5 – область выбора параметров на контактах; 6 – кнопки выбора координатных осей; 7 – список построенных графиков; 8 – кнопки создания и редактирования графиков; 9 – область графиков; 10 – строка состояния

Для построения графика по данным из загруженного файла *.plt необходимо выполнить следующие действия: выделить нужный загруженный файл с данными; выделить нужный контакт; выделить параметр для данного контакта и выбрать ось, на которой будет отображаться диапазон значений данного параметра, при этом первым нужно задавать параметр по оси Х. Такие же действия проделать для задания параметров по осям Y и Y2. Таким образом строятся различные вольтамперные характеристики и другие подобные зависимости. Файл с расширением *.plx достаточно просто загрузить, график будет построен автоматически. Следует учесть, что для просмотра профилей распределения примесей из **DIOS** нужно использовать полулогарифмические координаты: X–log Y. Пример: для построения передаточной характеристики МОП-транзистора нужно напряжение на затворе (*gate* \rightarrow *InnerVoltage*) отложить по оси X, а полный ток стока (*drain* \rightarrow *TotalCurrent*) – по оси Y.

Программа **TECPLOT** предназначена для визуального представления результатов расчетов, таких как распределения концентрации примесей, плотностей токов, подвижностей носителей и т. д. **TECPLOT** может работать с одно-, двух- и трехмерными виртуальными приборными структурами. Окно программы **TECPLOT** показано на рис. 2.6. При работе с программой **TECPLOT** желательно отключить режим *NumLock*.

При загрузке файлов структуры необходимо учитывать, что **TECPLOT** использует пару файлов с расширениями *.dat и *.grd.

Наиболее часто используемые пункты строки меню:

File - > Load – загрузка данных;

View - > Maximize Workspace – увеличение области просмотра на все окно; *Axis* – настройка внешнего вида координатных осей;

Plot - > Contour – изменение количества изолиний, режима цветового градиента, меток изолиний и т. д. для выбранного параметра;

Slicer – построение сечений;

Data - > Probe At – отображение значений параметров в заданной точке.

Панель управления можно разделить на две части: кнопки управления, используемые в любом режиме просмотра, и область, вид которой зависит от режима просмотра – одномерный или многомерный.

Основные кнопки управления (рис. 2.6, 2а):

🖉 – *Load* – загрузка данных;

— – *Reset* – приведение к начальному виду;

🕒 – *Redraw* – перерисовка изображения;

🖸 – *Last View* – предыдущий вид;

— Zoom – увеличение изображения;

Ш – *Measure* – измерение расстояния между точками.

Рис. 2.6. Окно программы **TECPLOT**: 1 – строка меню; 2 – панель управления; 3 – область просмотра; 4 – строка состояния

Ниже кнопок управления находится переключатель режима просмотра (рис. 2.6, 2б): одномерный или многомерный (двух- или трехмерный). Одномерный режим используется для просмотра графиков. Далее рассматривается только двумерный режим просмотра (рис. 2.7).

После загрузки данных в области просмотра отображается исследуемая структура. Для увеличения какой-либо ее области нужно нажать кнопку **Zoom** и выделить левой кнопкой мыши рассматриваемую прямоугольную область. Для перемещения структуры нужно, нажав и удерживая правую кнопку мыши, перемещать курсор в нужную сторону. Для включения/выключения отображения сетки на каком-либо материале или области нужно сначала выбрать материал/область, затем нажать кнопку включение/выключение сетки. Аналогично производится включение/выключение отображения и т.п.

Рис. 2.7. Панель управления программы **ТЕСРLОТ** в многомерном режиме

1 – имена используемых файлов структуры;

2 – список параметров просмотра, в нем отображаются те величины, распределения которых можно просмотреть для данной структуры (например, распределение примесей);

3 — поля минимального и максимального значений выбранного параметра;

4 — кнопка переключения режима интерполяции при отображении (линейная, логарифмическая, с использованием гиперболического арксинуса);

5 — кнопка выбора различных режимов вычисления минимального и максимального значения параметров;

6 — включение/выключение отображения цветовой шкалы значений параметра;

7 — переключение режимов отображения списка материалов/областей;

8 – список материалов либо областей;

9 — включение/выключение отображения сетки выбранного материала/области;

10 — включение/выключение отображения границ выбранного материала/области;

11 – то же для поля векторов;

12 — включение/выключение отображения изолиний при включенном цветовом градиенте;

13 — включение/выключение отображения изолиний при выключенном цветовом градиенте;

14 – кнопки режима отображения выбранного материала/области (слева направо): отображение только выбранного материала, отображение выбранного материала, выключение отображения выбранного материала

3. ПРИБОРНО-ТЕХНОЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ LDMOS-СТРУКТУР

3.1. Конструкция и технология LDMOS-структур

LDMOS-транзисторы (Laterally Diffused Metal Oxide Semiconductors Transistors), структура которых приведена на рис. 3.1, изготавливаются по классической эпитаксиально-планарной кремниевой технологии [6, 7, 16]. В настоящее время практически все мощные СВЧ МОS-транзисторы являются п-канальными, так как подвижность электронов в кремнии в 3 раза выше, чем дырок.

Рис. 3.1. Схема вертикального среза мощного СВЧ LDMOS-транзистора

LDMOS-транзисторы изготавливаются на низкоомной подложке ртипа проводимости с кристаллографической ориентацией (100). Низкое удельное сопротивление р порядка 0,01 Ом см обеспечивает низкое сопротивление сток-исток в открытом состоянии R_{cu} , а ориентация (100) характеризуется меньшей плотностью поверхностных состояний [3]. На подложке выращивается эпитаксиальный р-слой, толщина и удельное сопротивление которого подбираются исходя из требуемого уровня пробивного напряжения сток-исток $U_{проб си}$. Так для приборов с $U_{проб си} \sim 100$ В типичной является эпитаксиальная пленка 8КДБ20.

Контакт к истоку наносится на обратную сторону пластины – рподложку. С n^+ -областью истока p^+ -подложка соединяется посредством глубокой диффузионной p^+ -области и соединительной металлизации. Диффузионная p^+ -область редко достигает p^+ -подложки. На практике существует «зазор» между подложкой и диффузионной p^+ -областью, концентрация бора в котором соответствует уровню примеси в эпитаксиальном слое.

В качестве материала для затвора используется поликремний, легированный методом ионной имплантации фосфором с высокой дозой. Выбор поликремния в качестве материала затвора дает возможность использовать затвор в качестве маски для последующих диффузий. Этот метод самосовмещенного затвора, позволяет повысить воспроизводимость электрофизических параметров прибора, снизив ее зависимость от точности совмещения фотошаблона с пластиной.

Концентрация бора в эпитаксиальном слое, как правило, мала, так что канал может возникать уже при нулевом смещении на затворе под действием зарядов на границе окисла с кремнием. Для достижения требуемого уровня порогового напряжения $U_{\text{пор}}$ проводится ионное легирование так называемого р-кармана, маской для которого служит поликремниевый затвор.

Дрейфовая LDD п⁻⁻область стока ввиду низкой концентрации примеси быстро обедняется при подаче напряжения сток-исток, что обеспечивает вывод области пространственного заряда (ОПЗ) из-под затвора и ее распространение вглубь эпитаксиального слоя, тем самым позволяя повысить $U_{проб си}$, не меняя длины затвора. Длина LDD и концентрация доноров в ней наравне с параметрами эпитаксиального слоя определяют пробивное напряжение $U_{проб си}$. Оптимальной является такая концентрация примеси в LDD, которая при заданной длине LDD обеспечивает ее полное обеднение при напряжении сток-исток, равном заданному $U_{проб си}$.

п⁺-области стока и истока формируются одновременно. Так как именно они служат для контакта с металлом, концентрация примеси в них должна быть высокой, чтобы обеспечить качественный омический контакт.

3.2. Моделирование технологии создания LDMOS-структур

3.2.1. Моделирование технологии создания LDMOS-структур

Кремниевая технология мощных СВЧ-транзисторов включает термическое окисление на этапах создания масок, изолирующих областей, подзатворных диэлектрических слоев, пассивации поверхности структур. Моделирование одномерного термического окисления основано на модели Дила – Гроува [6, 7], согласно которой толщина окисла *X*(*t*) равна

$$X(t) = \frac{A}{2} \left(\sqrt{1 + \frac{t+\tau}{A^2/4B}} - 1 \right),$$

где *t* – время окисления; *B* – параболическая константа скорости окисления; *B*/*A* – линейная константа скорости окисления; τ – сдвиг по времени или поправка на начальную толщину окисла X_0 : $\tau = \frac{X_0^2 + AX_0}{B}$. Константы скоростей окисления зависят от температуры и от среды окисления.

При температурах окисления выше 950 °С упругие напряжения в окисле быстро релаксируют, поэтому он может рассматриваться как вязкая жидкость, а движение его границы – как вязкое течение. С учетом большой вязкости и малых скоростей роста верно уравнение Навье – Стокса

$$\eta \nabla^2 \upsilon = \nabla p \,,$$

где η – вязкость окисла; v – скорость движения границы SiO₂–Si; p – давление.

Если окисел рассматривать как несжимаемую жидкость, то уравнение непрерывности потока запишется в виде

 $\Delta v = 0$.

Численное решение системы уравнений проводится при соответствующих граничных условиях в различных областях растущего окисла, аналогично модели Дила – Гроува. Данная система уравнений описывает двухи трехмерные профили термически наращиваемого окисла типа «птичий клюв».

Основной задачей моделирования процесса ионной имплантации [16] является расчет распределения концентрации внедряемой примеси в однои многослойной мишенях в одно-, дву- и трехмерном случаях. Наиболее адекватной и физически обоснованной моделью ионной имплантации является метод Монте-Карло, обладающий достаточной точностью и универсальностью, но весьма трудоемкий для инженерных расчетов. Существенно сократить затраты машинного времени позволяет метод кинетического уравнении Больцмана (КУБ), описывающего изменение функции распределения внедренных ионов в фазовом пространстве импульса и координат. При достаточно жестких требованиях к точности моделирования должны быть применены указанные методы.

Для описания одномерных распределений ионно-имплантированных примесей в однородных аморфных мишенях используются гауссовские распределения:

– неусеченная гауссиана ($R_p > 3\Delta R_p$):

$$N(x) = \frac{Q}{\sqrt{2\pi}\Delta R_p} \exp\left[-\frac{(x-R_p)^2}{2\Delta R_p^2}\right];$$

– усеченная гауссиана ($R_p < 3 \Delta R_p$):

$$N_{m} = \frac{Q}{\sqrt{\frac{\pi}{2}} \Delta R_{p} \left(1 + erf \frac{R_{p}}{\sqrt{2} \Delta R_{p}}\right)} \exp\left[-\frac{(x - R_{p})^{2}}{2 \Delta R_{p}^{2}}\right],$$

где N(x) – концентрация примеси на глубине x; R_p и ΔR_p – нормальный пробег и среднеквадратичное отклонение. Реальные профили имеют асимметрию, описываемую нормированным коэффициентом асимметрии γ . Наиболее точно описываются асимметричные профили ионно-имплантированных примесей функцией Пирсон-4:

$$N(x) = N_m \left| b_2 x'^2 + b_1 x' + b_0 \right|^{\frac{1}{2b_2}} \cdot \exp \left[-\frac{\frac{b_1}{b_2} + 2a_0}{\sqrt{\left| 4b_0 b_2 - b_1^2 \right|}} \operatorname{arctg} \frac{2b_2 x' + b_1}{\sqrt{\left| 4b_0 b_2 - b_1^2 \right|}} \right],$$

где a_0 , b_1 , b_2 – константы, которые выражаются через интегральные параметры распределения R_p , ΔR_p , γ' и β' (нормированный эксцесс).

Для монокристаллического кремния реальные профили распределения имеют в области глубин больших, чем нормальный пробег, заметные отличия от гауссовских и Пирсон-4 распределений. Это обусловлено такими причинами как каналирование, междоузельная диффузия внедренной примеси в процессе проведения ионного легирования и т. д. На практике в большинстве случаев для повышения воспроизводимости технологических процессов влияние этих эффектов стараются уменьшить.

Эффект каналирования следует учитывать при легировании стоковой LDD – области, если используется только активационный отжиг. В этом случае расчет распределения ионно-имплантированных примесей проводится с учетом экспоненциального хвоста по модели

В кремниевой планарной технологии процессы создания диффузионных областей описываются с помощью законов Фика. Согласно первому закону Фика поток *J* диффундирующей примеси состоит из диффузионной и дрейфовой компонент

$$J = -D\nabla N - Z\mu N'E ,$$

где D – коэффициент диффузии атомов примеси; ∇ – оператор градиента; $N \equiv N(x,y,z,t)$ – концентрация примеси, зависящая от координат x, y, z и времени диффузии t; Z – зарядовое состояние ионов примеси (+1 – для акцепторов, -1 – для доноров); μ – подвижность заряженных ионов; $N' \equiv N'(x,y,z,t)$ – концентрация ионизированных атомов примеси; E – напряженность внутреннего электростатического поля, созданного градиентом концентрации ионизированных атомов примеси.

Из закона сохранения вещества следует второй закон Фика:

$$\frac{\partial N}{\partial t} = \nabla \big(D\nabla N + Z \mu N' E \big).$$

Решение данного дифференциального уравнения в частных производных второго порядка проводится при различных начальных и граничных условиях, вид которых зависит от выбранных приближений.

Современные модели диффузии рассматривают этот процесс на атомистическом уровне, позволяющем объяснить и смоделировать возникающие основные физические эффекты. Генерация вакансий (например, при ионной обработке мишеней) и неравновесные процессы (например, на границе раздела SiO₂–Si при окислении) определяют «дальнодействующие» эффекты. «Локальные» эффекты обусловлены концентрацией примеси: кулоновское взаимодействие атомов примеси с заряженными вакансиями; возникновение внутренних электростатических полей, ускоряющих диффузию; кластеризация и преципитация примесей; генерация заряженных вакансий вследствие деформации решетки.

Указанные эффекты сильно влияют на диффузию примесей в кремнии, причем, при моделировании распределений примесей необходимо для каждой примеси и условий процесса установить влияющие на коэффициент диффузии факторы.

В общем случае решение уравнений диффузии Фика проводится методами конечных разностей на неравномерной дискретной сетке с узловыми точками, расположенными в пределах границ прибора или рассматриваемой области моделирования [17].

Для аппроксимации по времени левой части уравнения могут быть использованы явный или неявный методы Эйлера, метод формул дифференцирования назад (ФДН), другие методы, а также составные алгоритмы на основе указанных выше методов.

В одномерном случае, который обобщается на дву- и трехмерные задачи, аналог правой части уравнения в виде консервативной разностной схемы можно получить интегро-интерполяционным методом. При аппроксимации левой части уравнения методом ФДН порядка *m* конечно-разностное представление записывается в виде системы алгебраических уравнений (СЛАУ)

$$\frac{1}{\tau^{k+1}} \sum_{j=0}^{m} \alpha_{j}^{k+1,m} N_{i}^{k+1-j} = \frac{2}{h_{i+1/2}^{k+1} + h_{i-1/2}^{k+1}} \left[\frac{D_{i+1/2}^{k+1}}{h_{i+1/2}^{k+1}} \left(N_{i+1}^{k+1} - N_{i}^{k+1} \right) - \frac{D_{i-1/2}^{k+1}}{h_{i-1/2}^{k+1}} \left(N_{i}^{k+1} - N_{i-1}^{k+1} \right) \right],$$

где $\tau^{k+1} = t^{k+1} - t^k$ – шаг по времени; t^{k+1} , t^k – дискретные моменты времени; N_i^k – концентрация примеси в *i*-ом узле x_i пространственной сетки в момент времени t^k ; $D_{i\pm 1/2}^{k+1}$ – аппроксимация коэффициента диффузии на интервалах $(x_i^{k+1}, x_{i+1}^{k+1})$ и $(x_{i-1}^{k+1}, x_i^{k+1})$; $h_{i-1/2}^{k+1} = (x_i^{k+1} - x_{i-1}^{k+1})$ – шаг сетки пространственного разбиения $\{x_i^{k+1}\}$, i = 1, 2, ..., n; x_1^{k+1}, x_n^{k+1} – границы пространственной области моделирования;

$$\alpha_{j}^{k+1,m} = -\frac{t^{k+1} - t^{k}}{t^{k+1} - t^{k+1-j}} \prod_{l=1,l\neq j}^{m} \left(\frac{t^{k+1} - t^{k+1-l}}{t^{k+1-j} - t^{k+1-l}} \right), \quad j \ge 1;$$

$$\alpha_{0}^{k+1,m} = \tau^{k+1} \sum_{l=1}^{m} \left(t^{k+1} - t^{k+1-l} \right) = -\sum_{l=1}^{m} \alpha_{l}^{k+1,m}.$$

Метод ФДН позволяет получить хорошее начальное приближение N^{k+l} для каждого последующего шага по времени k+l:

$$\widetilde{N}^{k+1} = \sum_{j=1}^{m+1} \beta_j^{k+1,m} N^{k+1-j} ,$$

$$\Gamma \exists e \ \beta_j^{k+1,m} = \prod_{l=1, l \neq j}^{m+1} \left(\frac{t^{k+1} - t^{k+1-l}}{t^{k+1-j} - t^{k+1-l}} \right), \quad j \ge 2; \quad \beta_1^{k+1,m} = 1 - \sum_{l=2}^{m+1} \beta_l^{k+1,m} .$$

Сравнительный анализ методов временной аппроксимации показывает, что наиболее эффективным с точки зрения точности и величины временного шага является метод ФДН, причем его использование с m > 2 оправдано лишь в наиболее сложных расчетах.

В СЛАУ используется приближенное значение коэффициента диффузии $D_{i+1/2}$ на интервале (x_i, x_{i+1})

$$D_{i+1/2}^{k+1} = \frac{1}{N_{i+1}^k - N_i^k} \int_{N_i^k}^{N_{i+1}^k} D(N) dN .$$

3.2.2. Приборно-технологическая модель LDMOS-транзистора в DIOS

Приборно-технологическая модель LDMOS-транзистора выполняется в модуле **DIOS**.

Командный файл с именем LDMOS-Transistor имеет традиционную структуру:

Title('LDMOS-Transistor')

Набор геометрических параметров LDMOS-транзистора, используемых при моделировании:

set H_Epi=@H_Epi@ set P_plus_size=@P_plus_size@ set N_plus_size=@N_plus_size@ set L_GATE=@L_Gate@ set X1_GATE=\$N_plus_size+\$P_plus_size set X2_GATE=\$X1_GATE+\$L_GATE set L_LDD=@L_LDD@ set DRAIN_WINDOW=0.7 set RIGHT=\$X1_GATE+\$L_GATE+\$L_LDD+\$DRAIN_WINDOW

Команда Set служит для объявления локальных параметров в командном файле DIOS. В качестве значений параметра можно задать число, строку символов либо одиночный символ (для этого они должны быть заключены в апострофы, например 'Constant'), параметр, объявленный в оболочке GENESISe, уже определенный внутренний параметр DIOS, выражение, содержащее различные варианты перечисленных величин. Обрамляющие символы @ означают ссылку на имя параметра из строки параметров проекта. Для каждого эксперимента GENESISe подставляет значения параметров из соответствующей «ветки». Как и любой программный модуль, DIOS может оперировать только с теми внешними параметрами, которые были объявлены либо в нем, либо в предыдущем модуле.

Символ \$ означает ссылку на внутренний параметр **DIOS**. Ссылаться можно только на уже определенные ранее параметры.

Объявление исходной подложки, настройка расчетной сетки и выбор основных моделей для ионного легирования и диффузии:

grid(x=(0.0, \$RIGHT) y=(-50.0, 0.0), nx=10) substrate(orientation=100, element=B, rho=0.01, ysubs=0.0)

Repl(Cont(MaxTrl=12, RefineBoundary=-5, RefineGradient=-6, Refine-Maximum=-5, RefineJunction=-8, Resist(MaxTrl=1), Ngra=1))

Adapt() diff:(moddiff=semicoupled) implant:(function=Pearson, LateralFunction=Pearson)

Наращивание эпитаксиального слоя и окисление перед первым легированием. Концентрация примеси в эпитаксии рассчитывается через удельное сопротивление, как принято в кремниевом производстве:

```
diff(GrowthRate=300, te=1200, atmo=Epi, ELEM=B,
Conc=1/(1.6e19*450*@Rho_Epi@),
thickness=$H_Epium)
diff(time=10, temperature=900, atmosphere=O2)
```

Формирование p^+ -области. Легирование производится нормально к покрытой слоем SiO₂ поверхности пластины, что обеспечивает подавление эффекта каналирования, при этом перед операцией диффузии удаляется фоторезист:

```
comment('p+')
mask(material=resist, thickness=1000nm, xleft=$P_plus_size,
xright=$RIGHT)
implant(element=B, dose=1e16, energy=80keV, tilt=0)
etch(material=resist)
diff(time=50, temperature=1150, atmosphere=N2)
```

Подзатворное окисление. Расход газов указан в литрах в минуту; добавление паров хлорной кислоты делается с целью связывания подвижных ионов натрия и калия, наличие которых негативно сказывается на параметрах транзистора:

comment('gate oxidation')

diff(time=20, temperature=900, Flow(H2O=0.01l/min, HCI=0.005l/min), at-mosphere=mixture)

Создание затвора. После осаждения поликремния, его легируют большой дозой, но с низкой энергией, чтобы примесь не проникла в подложку. Толщина поликремния, указанная в команде eath, превосходит аналогичную толщину в команде deposit. Это травление с перетравливанием, обеспечивающее гарантированное удаление удаляемого материала:

```
comment('poly gate')
deposit(material=po, thickness=300nm)
implant(element=P, dose=1e16, energy=20keV, tilt=0)
mask(material=resist, thickness=1000nm, xleft=$X1_GATE,
xright=$X2_GATE)
etch(material=po, remove=0.4, rate(aniso=100))
etch(material=resist)
```

Создание р-кармана. Эта операция проводится по технологии «самосовмещенного затвора»: левая граница фоторезистивной маски располагается на середине затвора, оставляя половину его открытой. Энергия легирования мала, чтобы бор не достигал подзатворного окисла. Таким образом, граница р-кармана (без учета бокового отклонения ионов бора) располагается точно под краем затвора. Разгонка разделена на две части, первая из которых проводится в атмосфере кислорода, что обеспечивает образование пленки окисла на поликремниевом затворе, предотвращающей его деградацию при высокотемпературной обработке. Этот и последующие отжиги осуществляются при меньшей температуре, чем температура диффузионной разгонки р⁺-области:

```
comment('p-')
mask(material=resist, thickness=1000nm, xleft=$X1_GATE+$L_GATE*1/2,
xright=$RIGHT)
implant(element=B, dose=3e13, energy=30keV, tilt=0)
etch(material=resist)
diff(time=5, temperature=1000, atmosphere=O2)
diff(time=50, temperature=1000, atmosphere=N2)
```

Ионное легирование LDD-области также проводится методом «самосовмещенного затвора». Энергия выбирается так, чтобы максимум концентрации фосфора приходился на поверхность пластины:

```
comment('n--')
mask(material=resist, thickness=1000nm, xleft=0,
xright=$X1_GATE+$L_GATE/2)
implant(element=P, dose=1e12, energy=70keV, tilt=0)
etch(material=resist)
diff(time=30, temperature=1000, atmosphere=N2)
```

Создание n^+ -областей стока и истока. Первая маска формирует истоковую область, вторая – стоковую. Так как эти области отвечают только за контакт с металлом, то диффузионная разгонка их примеси проводится при еще более низкой температуре и в течение непродолжительного времени, то есть по сути лишь удаляет радиационные дефекты и выводит примесь из междоузлий. В качестве примеси выбран мышьяк, так как его коэффициент диффузии меньше чем у фосфора:

Создание контактных окон. Сначала проводится осаждение слоя SiO₂ толщиной 0,5 мкм, чтобы создать зазор между металлическими дорожками и полупроводником, тем самым снизив емкости структуры. В полученном слое оксида с перетравом травятся отверстия под контакт. Необычный тип травления – анизотропный с небольшой составляющей изотропного травления – выбран для придания контактам формы, близкой к реальной. Сам металл наносится в следующем модуле:

```
comment('Window contact')
deposit(material=ox, thickness=0.5)
mask(material=resist, thickness=1000nm, xleft=0, xright=$P_plus_size-
$N_plus_size)
mask(material=resist, thickness=1000nm, xleft=$X1_GATE-1,
xright=$X2_GATE+$L_LDD+0.02)
etch(material=ox, remove=0.55, rate(aniso=100, iso=1))
etch(material=resist)
```

Сохранение одномерного профиля бора у поверхности кремния. Здесь n@node@_ChannelConc – имя файла, в котором сохраняется профиль, spe – перечень сохраняемых параметров (в данном случае активный бор), ysect – координата, вдоль которой сохраняется профиль (поправка в 0,075 мкм вызвана уходом границы кремния в результате окисления):

1d(file=n@node@_ChannelConc, spe(BActive), ysect(\$H_Epi-0.075), fac=-1)

Сохранение полученной структуры и задание контактов. Фраза location=bottom означает расположение контакта на обратной стороне кристалла. Третий контакт (сток) задается в следующем модуле.

Save(File='n@node@', Type=Mdraw, compress=off, Contacts(contact1(name='source', location=bottom) contact2(name='gate', \$X2_GATE-\$L_GATE/2, \$H_Epi+0.2)))

В результате выполнения приведенных команд будет создана структура, изображенная на рис. 3.2.

Рис. 3.2. Структура LDMOS-транзистора, рассчитанная в **DIOS**

3.2.3. Создание металлических контактов в модуле DEVISE

Технологическая модель, созданная в модуле **DIOS**, дополняется в модуле конструктивного моделирования **DEVISE**. **DEVISE** удобен, когда сама методика моделирования технологии создания слоев не важна, зато необходима точность их геометрических размеров и взаиморасположений. Поэтому в данном модуле удобно конструировать металлические контакты и пассивирующие слои. Немалым преимуществом является также то, что расчет в **DEVISE** проходит на порядок быстрее, чем **DIOS**.

Команды, необходимые для завершения модели LDMOS-транзистора:

Загрузка файлов обрабатываемой структуры. «n@previous@» означает номер предшествующего модуля:

(iseio:readbnd "n@previous@_mdr.bnd")

Объявление внутренних параметров **DEVISE**. Обратите внимание, что выражения в **DEVISE** используют обратную польскую запись – знак операции располагается перед операндами. Т.е. выражение A + B запишется как (+ A B).

(define DRAIN_N+ 0.7) (define H_EPI @H_Epi@) (define P_plus_size @P_plus_size@) (define N_plus_size @N_plus_size@) (define TOP (* -1 H_EPI)) (define X1_GATE (+ N_plus_size P_plus_size)) (define X2_GATE (+ X1_GATE @L_Gate@)) (define L_LDD @L_LDD@) (define RIGHT (+ (+ X2_GATE L_LDD) DRAIN_N+)) (define Y_ME1 (- -1 H_EPI)) (define Y_ME1 (- Y_ME1 1)) (define Y_ME2 (- Y_OX 1))

Создание слоев металлизации и пассивации. Режим ВАВ означает, что вновь объявляемая область в случае перекрытия уже существующих областей, «обрезается» ими. Противоположный режим работы обозначается АВА.

В данном проекте все области создаются прямоугольниками (rectangle), для которых задаются координаты левого верхнего и правого нижнего углов. Также необходимо указать материал и имя новой области.

В данной модели металлизация стока объявляется поликремнием (PolySi), что позволяет избежать некоторых специфических ошибок, возникающих при расчете электрофизических параметров:

(isegeo:set-default-boolean "BAB")

```
(isegeo:create-rectangle(position(- (- P_plus_size N_plus_size) 0.1)
Y_ME1 0) (position(- X1_GATE 0.9) 0 0) "Aluminum" "Me_Source")
(isegeo:create-rectangle(position(- (+ X2_GATE L_LDD) 1) Y_ME1 0)
    (position RIGHT 0 0) "PolySi" "Me_Drain_1")
```

(isegeo:create-rectangle(position 0 Y_OX 0) (position(+ X2_GATE L_LDD) 0 0) "SiO2" "Oxide")

(isegeo:create-rectangle(position(- (+ X2_GATE L_LDD) 2) Y_ME2 0) (position RIGHT 0 0)

"PolySi" "Me_Drain_2")

Объявление контакта «Сток»:

(isegeo:define-contact-set "drain" 4.0 (color:rgb 0 0 1) "##") (isegeo:define-2d-contact (find-edge-id (position (+ X2_GATE L_LDD) Y_ME2 0)) "drain")

Сохранение рассчитанной структуры:

(iseio:save-dfise-bnd "all" "@boundary/o@")

Задание профиля легирования поликремния. (того, что составляет контакт к стоку). Задается тип профиля (constant-profile), его имя (Prof-poly), примесь (PhosphorusActiveConcentration) и концентрация (2e20):

(isedr:define-constant-profile "Prof-poly" "PhosphorusActiveConcentration" 2e20)

(isedr:define-constant-profile-material "Place-Prof-poly" "Prof-poly" "PolySi")

Полученная в результате расчета структура показана на рис. 3.3.

Рис. 3.3. Структура LDMOS-транзистора с металлизацией

3.2.4. Оптимизация сетки в модуле MESH

Сетка, созданная во время моделирования технологических операций в **DIOS**, не оптимальна для расчета электрофизических параметров. Некоторые области (в частности, подзатворная) нуждаются в уточнении, в то время как другие (p⁺-область, исходная подложка) излишне подробны (рис. 3.4).

Рис. 3.4. Расчетная сетка, сгенерированная в DIOS

Для оптимизации сетки служит командный файл, созданный в программном модуле редактора сеток **MESH**.

Title "LDMOS-Transistor"

```
Definitions{
     # Refinement regions
     Refinement "Default Region"
     { MaxElementSize = (5.0 5.0) MinElementSize = (1.0 1.0)
     RefineFunction = MaxTransDiff(Variable = "DopingConcentration",
Value = 1) \}
     Refinement "Epitax"
     { MaxElementSize = (0.5 0.5) MinElementSize = (0.1 0.1)
     RefineFunction = MaxTransDiff(Variable = "DopingConcentration",
Value = 1.0 }
     Refinement "Active region"
     { MaxElementSize = (0.15 0.15) MinElementSize = (0.03 0.03)
     RefineFunction = MaxTransDiff(Variable = "DopingConcentration",
Value = 1.0 }
     Refinement "LDD"
     { MaxElementSize = (0.1 0.1) MinElementSize = (0.02 0.02)
     RefineFunction = MaxTransDiff(Variable = "DopingConcentration",
Value = 1.0 }
```

```
Refinement "Recomb"
     { MaxElementSize = (0.05 0.05) MinElementSize = (0.01 0.01)
     RefineFunction = MaxTransDiff(Variable = "DopingConcentration",
Value = 1.0 }
     Refinement "Ox"
     { MaxElementSize = (0.3 0.3) MinElementSize = (0.1 0.1)
     RefineFunction = MaxTransDiff(Variable = "DopingConcentration",
Value = 1.0 }
     Refinement "Under gate"
     { MaxElementSize = (0.03 0.03) MinElementSize = (0.008 0.008)
     RefineFunction = MaxTransDiff(Variable = "DopingConcentration",
Value = 1.0 }
     Refinement "Ch"
     { MaxElementSize = (0.01 0.01) MinElementSize = (0.005 0.005)
     RefineFunction = MaxTransDiff(Variable = "DopingConcentration",
Value = 1.0 }
     # Profiles
     SubMesh "SubMesh 0"
     { Geofile = "n@node|-2@_dio.grd" Datafile = n@node|-2@_dio.dat } }
    Placements {
     # Refinement regions Refinement "Default Region"
     { Reference = "Default Region"
     # Default region }
     Refinement "Epitax"
     { Reference = "Epitax" RefineWindow = rectangle [(0.0 @ < -1*H Epi > @),
     (@ < P plus size + N plus size + L Gate + L LDD + 0.7 > @ 0)]
     Refinement "Active region"
     { Reference = "Active region"
     RefineWindow = rectangle [( @<P_plus_size > @ @<-1*H_Epi > @ ),
     (@<P plus size+N plus size+L Gate+L LDD+0.7 > @ @<-
1*H Epi+4.0 > @ )] }
     Refinement "LDD"
     { Reference = "LDD"
     RefineWindow = rectangle [( @<P_plus_size > @ @<-1*H_Epi > @ ),
     (@<P plus size+N plus size+L Gate+L LDD+0.7 > @ @<-
1*H Epi+1.5 > @ )] }
     Refinement "Recomb"
     { Reference = "Recomb"
     RefineWindow = rectangle [(
@<P plus size+N plus size+L Gate+L LDD-0.5 > @
```

```
@<-1*H_Epi > @ ),
     (@<P_plus_size+N_plus_size+L_Gate+L_LDD+0.7 > @ @<-
1*H Epi+1.5 > @ )] }
     Refinement "Ox"
    { Reference = "Ox"
     RefineWindow = rectangle [( @<P plus size+N plus size > @ @<-
1^{H} Epi-5.0 > @),
     (@<P_plus_size+N_plus_size+L_Gate+L_LDD > @ @<-1*H_Epi > @)] }
     Refinement "Under gate"
    { Reference = "Under gate"
     RefineWindow = rectangle [( @<P_plus_size+N_plus_size-0.3 > @ @<-
1*H Epi-0.05 > @ ), ( @ < P plus size+N plus size+L Gate+0.3 > @ @ <--
1*H_Epi+0.3 > @ )] }
     Refinement "Ch"
    { Reference = "Ch"
     RefineWindow = rectangle [( @<P_plus_size+N_plus_size > @ @<-
1*H Epi-0.02 > @),
     (@<P plus size+N plus size+L Gate > @ @<-1*H Epi+0.1 > @ )] }
    Submesh "SubMesh 0"
    { Reference = "SubMesh_0" } }
```

Указание на файлы структуры, для которой генерируется сетка, «n@node|-2@» означает модуль, чей порядковый номер на два меньше номера запрашивающего модуля:

Profiles
SubMesh "SubMesh_0"
{ Geofile = "n@node|-2@_dio.grd" Datafile = "n@node|-2@_dio.dat" }

Фрагмент сетки **Recomb** введен для уточнения сетки в области, где происходит пробой структуры при близких к оптимальным параметрам (вблизи n^+ -стока). Выражения, определяющие координаты прямоугольной границы сетки для каждой области заключены в парные символы @< ... > @. MESH не позволяет задавать внутренние параметры, поэтому приходиться оперировать только внешними:

```
Refinement "Recomb"
{ Reference = "Recomb"
RefineWindow = rectangle
[(@<P_plus_size+N_plus_size+L_Gate+L_LDD-0.5 > @ @<-1*H_Epi > @ ) , (
@<P_plus_size+N_plus_size+L_Gate+L_LDD+0.7 > @ @<-1*H_Epi+1.5 > @
)] }
```

В результате выполнения командного файла LDMOS-Transistor в программном модуле **MESH** получена оптимизированная сетка (рис. 3.5).

Рис. 3.5. Сетка, оптимизированная в МЕЅН

3.3. Расчет электрофизических параметров LDMOS-структур

Расчет характеристик LDMOS-структур выполняется в модуле **DESSIS** по аналогии с измерением характеристик реальных приборов: задаются начальные напряжения на электродах модели, затем на одном из электродов изменяется напряжение в заданных пределах. При этом моделируется поведение прибора: рассчитываются токи, текущие через электроды, распределения электрического потенциала, напряженности электрического поля в структуре и т. д.

3.3.1. Модели, используемые для расчета электрофизических параметров

Основные электрофизические параметры и характеристики, такие как пороговое напряжение, передаточная и выходные характеристики, пробивное напряжение и др. рассчитываются путем решения фундаментальной системы уравнений, состоящей из уравнения Пуассона и уравнений непрерывностей для электронов и дырок:

$$\begin{cases} \nabla(\varepsilon \cdot \nabla \psi) = -q \left(p - n + N_N^+ - N_A^- \right), \\ \nabla \vec{J}_n = qR + q \frac{\partial n}{\partial t}, \\ -\nabla \vec{J}_p = qR + q \frac{\partial p}{\partial t}, \end{cases}$$

где є – диэлектрическая постоянная; ψ – электрический потенциал; q – заряд электрона; p – концентрация дырок; n – концентрация электронов; N_D^+ – количество ионизированных атомов доноров; N_A^- – количество ионизированных атомов акцепторов; J_n – плотность электронного тока; J_p – плотность дырочного тока; R – скорость рекомбинации электронов и дырок. Вид J_n и J_p зависит от используемых транспортных моделей [8].

Данная система уравнений решается методом сеток с использованием алгоритма Ньютона при изменяемых граничных условиях, при этом используются различные модели физических процессов в структуре [8].

Для эффективной собственной концентрации носителей учтывается зависимость ширины запрещенной зоны от концентрации примесей, которая в рамках модели *Slotboom*, описывается уравнением

$$\Delta E_g = E_{bgn} \left[\ln \left(\frac{N_i}{N_{ref}} \right) + \sqrt{\left(\ln \left(\frac{N_i}{N_{ref}} \right)^2 + 0.5 \right)} \right],$$

где $\Delta E_{\rm g}$ – ширина запрещенной зоны полупроводника; $E_{\rm bgn}$ и $N_{\rm ref}$ – параметры полупроводника; $N_{\rm i} = N_{\rm A} + N_{\rm D}$ – полная концентрация примесей.

При расчете подвижности носителей учтывается насыщение дрейфовой скорости носителей при высокой напряженности электрического поля. Этот эффект описывается в модели *Canali*:

$$\mu(E) = \frac{\mu_{low}}{\left[1 + \left(\frac{\mu_{low}E}{v_{sat}}\right)^{\beta}\right]^{\frac{1}{\beta}}},$$

где $\mu(E)$ – подвижность носителей; μ_{low} – подвижность носителей при низкой напряженности электрического поля; E – напряженность внутреннего электрического поля, равная модулю градиента квазиуровня Ферми; v_{sat} – дрейфовая скорость носителей в области насыщения; β – коэффициент, учитывающий зависимость подвижности от температуры:

$$E = \left| \nabla \varphi_{quasifermi} \right|; \ \mathcal{V}_{sat} = \mathcal{V}_{sat,0} \left(\frac{T_0}{T} \right)^{\mathcal{V}_{sat,exp}}; \ \beta = \beta_0 \left(\frac{T}{T_0} \right)^{\beta_{exp}},$$

где $\phi_{\text{quasifermi}}$ – квазипотенциал Ферми; $v_{\text{sat,0}}$, $v_{\text{sat,exp}}$, β_0 , β_{exp} – параметры полупроводника; $T_0 = 300$ K; T – температура полупроводника.

Зависимость подвижности носителей от концентрации примесей оценивается по модели *Masetti*:

$$\mu = \mu_{\min 1} \cdot \exp\left(-\frac{P_c}{N_i}\right) + \frac{\mu_{const} - \mu_{\min 2}}{1 + \left(\frac{N_i}{C_r}\right)^{\alpha}} - \frac{\mu_1}{1 + \left(\frac{C_s}{N_i}\right)^{\beta}},$$

где µ_{min1}, µ_{min2}, *P*_c, µ_{const}, µ₁, *C*_r, *C*_s – эмпирические параметры модели для заданного полупроводника.

Для моделирования генерационно-рекомбинационных процессов используются модели Шокли – Рида – Холла (ШРХ):

$$R = \frac{np - n_{i,eff}^2}{\tau_p(n+n_1) + \tau_n(p+p_1)};$$

$$n_1 = n_{i,eff} \exp\left(\frac{\mathbf{E}_i - \mathbf{E}_t}{kT}\right); \quad p_1 = n_{i,eff} \exp\left(\frac{\mathbf{E}_t - \mathbf{E}_i}{kT}\right),$$

где $n_{i,eff}$ – эффективная собственная концентрация носителей; τ_n , τ_p – времена жизни неосновных носителей в сильнолегированных областях; n_1 , p_1 – концентрации носителей, при которых уровень Ферми совпадает с уровнем дефектов E_t ; E_i – уровень энергии в середине запрещенной зоны.

Помимо модели ШРХ используется модель генерации носителей путем туннельного перехода зона-зона, а также модель van Overstraeten de Man лавинной генерации носителей:

$$G = \alpha_n n \nu_n + \alpha_p p \nu_p; \ \alpha(E) = \gamma a \exp\left(-\frac{\gamma b}{E}\right); \ \gamma = \frac{\tanh\left(\frac{h\omega_{op}}{2kT_0}\right)}{\tanh\left(\frac{h\omega_{op}}{2kT}\right)},$$

11

1

где G – скорость генерации носителей; α_n , α_p – коэффициенты ионизации электронов и дырок; ν_n , ν_p – скорости электронов и дырок; γ – фактор, учитывающий зависимость энергии оптических фононов $h\omega_{op}$ от температуры; $a, b, h\omega_{op}$ – коэффициенты модели для заданного полупроводника.

Расчет межэлектродных емкостей производится в рамках ACанализа – режима малого сигнала (*Small-Signal AC Analysis*). Одна из простейших эквивалентных схем MOS-транзистора на малом сигнале представлена на рис. 3.6.

Рис. 3.6. Малосигнальная эквивалентная схема MOS-транзистора: С_{зи}, С_{зс}, С_{си} – емкости затвор-исток, затвор-сток и сток-исток соответственно (входная, проходная и выходная емкости); g_m – малосигнальная крутизна характеристики прибора; g_d – малосигнальная выходная проводимость стока. Величины данных схемных элементов зависят от режима работы транзистора Работа в режиме малого сигнала описывается комплексным матричным уравнением:

$$\delta I = Y \cdot \delta U$$

где У – комплексная матрица проводимости.

Y – матрица состоит из двух частей:

 $Y = A + j\omega \cdot C,$

где A – матрица проводимости; C – матрица емкости; j – комплексная единица; ω – частота сигнала. Для типичного MOS-транзистора с 4 выводами – затвор (g), сток (d), исток (s), подложка (b) – матричное уравнение имеет вид:

$\left[i(g)\right]$] ($\int a(g,g)$	a(d,g)	a(s,g)	a(b,g)	$\int c(g,g)$	c(d,g)	c(s,g)	c(b,g)	$\left[u(g) \right]$	
i(d)		a(g,d)	a(d,d)	a(s,d)	a(b,d)	c(g,d)	c(d,d)	c(s,d)	c(b,d)	u(d)	
i(s)		a(g,s)	a(d,s)	a(s,s)	a(b,s)	$+ \int \omega c(g,s)$	c(d,s)	c(s,s)	c(b,s)	u(s)	•
$\lfloor i(b) \rfloor$		a(g,b)	a(g,b)	a(g,b)	a(g,b)	c(g,b)	c(g,b)	c(g,b)	c(g,b)	$\left\lfloor u(b) \right\rfloor$	

Элементы матриц A и C являются малосигнальными параметрами MOS-транзистора. Например, c(g,g) – это полная емкость затвора, c(d,d) – это полная емкость стока, a(d,g) – малосигнальная крутизна характеристики транзистора, a(d,d) – малосигнальная выходная проводимость стока.

3.3.2. Расчет переходной вольт-мперной характеристики

Расчет переходной ВАХ осуществляется при подаче постоянного напряжения (DC-анализ). На всех электродах модели задаются нулевые начальные напряжения, что повышает сходимость расчета и применяется при расчете практически любых параметров. Далее напряжение на стоке относительно истока U_{cu} поднимается до 10 В. После этого смещение на затворе U_{3u} поднимается до значения, заведомо превышающего пороговое напряжение U_{nop} (в данном случае 10 В) при фиксированном напряжении на стоке. Текст командного файла для расчета переходной характеристики в **DESSIS** приведен ниже.

File{ grid = "@grid@" doping = "@doping@" plot = "@dat@"
 current = "@plot@" output = "@log@" }

Electrode{ {name = "source" voltage = 0.0} {name = "gate" voltage = 0.0} {name = "drain" voltage = 0.0} }

Physics{ AreaFactor = @AreaFactor@ EffectiveIntrinsicDensity(Slotboom)

> Mobility(DopingDependence HighFieldSaturation Enormal) Recombination(SRH(DopingDependence)) Temperature = 300 }

Physics(MaterialInterface="Oxide/Silicon") {charge(surfconc=@Nss@)}

Math{ Extrapolate Iterations = 20 RelerrControl Derivatives
 NewDiscretization method = pardiso }

Plot{ DopingConcentration eDensity hDensity ElectricField Electrostatic-Potential

SpaceCharge SRHRecombination CDLRecombination TotalRecombination eCurrentDensity hCurrentDensity TotalCurrentDensity eDriftVelocity hDriftVelocity }

Solve{ Poisson Coupled{ Poisson Electron Hole }

QuasiStationary(InitialStep = 0.5 MaxStep = 0.5 MinStep = 1e-3 Goal{ name = "drain" voltage = 10 }) { Coupled{Hole Electron Poisson} }

QuasiStationary(InitialStep = 0.03 MaxStep = 0.03 MinStep = 1e-7 Goal{ name = "gate" voltage = 10 }) { Coupled{Hole Electron Poisson} } }

Вид полученной характеристики показан на рис. 3.7.

Рис. 3.7. ВАХ модели LDMOS-транзистора, рассчитанная в **DESSIS**: 1 – переходная характеристика (сплошная линия), 2 – зависимость крутизны от U_{зи} (прерывистая линия)

Определение порогового напряжения, крутизны и насыщения тока стока (максимального тока стока) по рассчитанной передаточной характеристике выполняется с помощью программы **INSPECT**. Пороговое напряжение определяется как напряжение на затворе, при котором ток стока равен 100 мА при $U_{cu} = 10$ В. За крутизну *S* характеристики принимается максимум производной тока стока по напряжению U_{3u} при постоянном $U_{cu} = 10$ В.

Программа **INSPECT** работает под управлением следующего командного файла:

```
#------#
    gr_setTitleAttr "IdVg"
                       -----#
    #_____
    ##load data
    set dset @plot@
    set data [file rootname $dset]
    proj load $dset
    ##creat curve
    cv_create IdVg "$data gate InnerVoltage" "$data drain TotalCurrent" y
    ##display curve
    cv display IdVg y
    ##set curve attribute
    cv setCurveAttr IdVg "IdVg" black solid 2 none 3 defcolor 1 defcolor
    ##set coordinate axis attribute
    gr setAxisAttr X {Gate Voltage (V)} 16 {} {} black 1 16 0 5 0
    gr setAxisAttr Y {Drain Current Density (A)} 16 {} {} black 1 16 0 5 0
    gr setAxisAttr Y2 {S (A/V)} 16 {} {} black 1 16 0 5 0
    cv_createWithFormula S_Vg "diff(<IdVg > )" A A A A
    cv setCurveAttr S Vg "S(Vg)" black "long dashed" 2 none 3 defcolor 1
defcolor
    cv display S Vg y2
    #-----#
    set VT [cv_compute "vecvalx(<IdVg > , 0.1)" A A A A]
    ft scalar VT $VT
    set S [cv_compute "vecmax(<S_Vg > )" A A A A]
    ft scalar S $S
    set Imax [cv compute "vecmax(<IdVg > )" A A A A]
    ft scalar lds max $lmax
```

Командный файл **INSPECT** содержит информацию о том, какие данные представить как график и какие параметры экстрагировать, и его содержание в блоках расчета разных характеристик в целом остается схожим.

Один из способов загрузки данных для отображения. Команда set аналогична одноименной команде в DIOS. @plot@ – ссылка на выходной файл DESSIS:

##load data set dset @plot@ set data [file rootname \$dset] proj_load \$dset

Создание кривой с именем IdVg, в кавычках указываются данные, которые, для создания графика, первые кавычки – данные для оси X, вторые – для оси Y. Для каждой оси указываются: датасет (\$data), электрод (gate) и физическая величина (InnerVoltage). Следует отметить, что не все величины относятся к какому-то конкретному электроду, примером может служить величина time. Параметр у в конце объявления кривой уточняет, что используется первая ось Y (левая), для отображения данных на правой оси используется обозначение y2:

##creat curve cv_create IdVg "\$data gate InnerVoltage" "\$data drain TotalCurrent" y

Отображение объявленной кривой IdVg. Пара команд cv_create и cv_display может быть заменена командой cv_createDS.

##display curve
cv_display IdVg y

Настройка кривой IdVg, включающая ее цвет, тип линии, толщину и т. д.:

##set curve attribute

cv_setCurveAttr IdVg "IdVg" black solid 2 none 3 defcolor 1 defcolor

Настройка осей, включающая их название (указывается в фигурных скобках), цвет линии оси, ее толщину и т. д.:

##set coordinate axis attribute
gr_setAxisAttr X {Gate Voltage (V)} 16 {} {} black 1 16 0 5 0
gr_setAxisAttr Y {Drain Current Density (A)} 16 {} {} black 1 16 0 5 0
gr_setAxisAttr Y2 {S (A/V)} 16 {} {} black 1 16 0 5 0

Создание кривой, отображающей зависимость крутизны от U_{3u} . Команда cv_createWithFormula позволяет создавать кривые в виде функций от имеющихся параметров, в том числе от других кривых. В данном случае кривая S_Vg задается как производная от кривой IdVg. После объявления формулы, по которой стоится новая кривая, указывается диапазон по осям X и Y, на которых эта кривая задана. A A A A Oзначает, что значений кривой S_Vg рассчитываются для всей области значений кривой IdVg:

cv createWithFormula S Vg "diff(<IdVg >)" A A A A

cv_setCurveAttr S_Vg "S(Vg)" black "long dashed" 2 none 3 defcolor 1 defcolor

cv_display S_Vg y2

Расчет и экстракция требуемых параметров. Здесь командой set создается параметр, которому посредством команды cv_compute присваивается выражение. Далее команда ft_scalar выводит требуемое значение в дерево проекта в GENESISe. Обратите внимание, при объявлении команды ft_scalar сначала указывается имя, которым параметр будет обозначаться в проекте, оно может не совпадать с внутренним именем INSPECT. После имени указывается само значение, в данном случае равное значению соответствующего внутреннего параметра INSPECT.

vecvalx(curve, y) – функция, возвращающая значение X, соответствующее заданному значению Y данной кривой (в нашем случае 0,1 A = 100 мA). Аналогичная функция, но с заменой Y на X и наоборот, называется vecvaly. Функции vecmax(curve)/vecmin(curve) возвращают максимальное/минимальное значение по Y данной кривой:

set VT [cv_compute "vecvalx(<IdVg > , 0.1)" A A A A] ft_scalar VT \$VT

set S [cv_compute "vecmax(<S_Vg >)" A A A A]
ft_scalar S \$S

set Imax [cv_compute "vecmax(<IdVg >)" A A A A]
ft_scalar Ids_max \$Imax

3.3.3. Расчет сопротивления сток-исток в открытом состоянии

Расчет сопротивления сток-исток в открытом состоянии R_{cu} производится в линейной области выходной характеристики при напряжении на затворе, превышающем пороговое. Как и в предыдущем блоке, напряжение повышается постепенно от 0 до требуемого значения (в данном случае $U_{3u} = 10$ В). Далее подается напряжение сток-исток до тех пор, пока ток стока не достигнет значения, равному параметру ld_max (в данном случае 1 А). Для этого используется команда BreakCriteria, добавляемая в секцию Math. Эта команда прерывает выполнение командного файла при достижении определенного критерия, в нашем случае – возрастания тока стока до 1 А. Величина ld_max зависит от ширины структуры (AreaFactor) и выбирается так, чтобы ограничить BAX линейным участком (рис. 3.8).

Рис. 3.8. Рассчитанная в **DESSIS** линейная область выходной характеристики модели LDMOS-транзистора

File{ grid = "@grid@" doping = "@doping@" plot = "@dat@"
 current = "@plot@" output = "@log@" }

Electrode{ {name = "source" voltage = 0.0} {name = "gate" voltage = 0.0} {name = "drain" voltage = 0.0} }

Physics{ AreaFactor = @AreaFactor@ EffectiveIntrinsicDensity(Slotboom) Mobility(DopingDependence HighFieldSaturation Enormal) Recombination(SRH(DopingDependence)) Temperature = 300 }

Physics(MaterialInterface="Oxide/Silicon") {charge(surfconc=@Nss@)}

Math{ Extrapolate Iterations = 20 RelerrControl Derivatives NewDiscretization

method = pardiso BreakCriteria {Current (Contact = "drain" maxval = @ld_max@)} }

Plot{ DopingConcentration eDensity hDensity eEparallel hEparallel eE-Normal hENormal

ElectricField ElectrostaticPotential SpaceCharge SRHRecombination

CDLRecombination TotalRecombination eCurrentDensity hCurrentDensity TotalCurrentDensity eDriftVelocity hDriftVelocity }

```
Solve{ Poisson Coupled{ Poisson Electron Hole}

QuasiStationary( InitialStep = 0.5 MaxStep = 0.5 MinStep = 1e-3

Goal{ name = "gate" voltage = 10 })

{ Coupled{Hole Electron Poisson} }

QuasiStationary( InitialStep = 0.01 MaxStep = 0.03 MinStep = 1e-7

Goal{ name = "drain" voltage = 20 })

{ Coupled{Hole Electron Poisson} } }
```

Командный файл **INSPECT**, обеспечивающий расчет экстракции сопротивления сток-исток, имеет следующую структуру:

#-----# gr_setTitleAttr "IdVd" #------#

set dset @plot@ set data [file rootname \$dset] proj_load \$dset

cv_create IdVd "\$data drain OuterVoltage" "\$data drain TotalCurrent" y cv_display IdVd y cv_setCurveAttr IdVd "Vg=12 V" black solid 2 none 3 defcolor 1 defcolor

gr_setAxisAttr X {Drain Voltage (V)} 16 {} {} black 1 16 0 5 0 gr_setAxisAttr Y {Drain Current (A)} 16 {} {} black 1 16 0 5 0 #------#

set Ron [cv_compute "(vecvalx(<IdVd > , @Id_max@)/@Id_max@)" A A A A] ft_scalar Ron \$Ron

3.3.4. Расчет напряжения пробоя сток-исток

Пробой стокового p-n-перехода моделируется путем расчета выходной вольтамперной характеристики модели LDMOS-структуры при нулевом напряжении на затворе с учетом лавинной генерации носителей. Напряжение на стоке увеличивается до тех пор, пока ток стока не достигнет 10 мкА (рис. 3.9). При этом используется уже описанная команда BreakCriteria, а максимальное напряжение на стоке указывается таким, чтобы пробой заведомо наступил.

При моделировании пробоя очень важен учет рекомбинации носителей. Помимо учета рекомбинации ШРХ и на парных дефектных уровнях, необходимо учитывать возможность рекомбинации путем туннелирования носителей через одиночные и парные дефектные уровни. Туннелирование начинает играть существенную роль при напряжениях на стоке, близких к пробивному. Поэтому в секцию Physics добавляются модели рекомбинации:

Recombination(SRH(DopingDependence Tunneling) CDL(DopingDependence Tunneling) Avalanche)

Минимальный шаг изменения напряжения на стоке используется достаточно малый, что необходимо для сходимости системы уравнений в области пробоя.

Еще одним отличием от предыдущих командных файлов является подключение резистора к стоку. Это необходимая мера, поскольку в предпробойной области изменение тока на порядки превосходит изменение приложенного напряжения, что существенно снижает сходимость расчетов. При пробое сопротивление транзистора резко падает, поэтому, в случае наличия резистора, часть напряжения начинает падать на нем, что сглаживает описанный выше эффект. Номинал резистора следует тщательно подбирать: слишком малое сопротивление не скажется на сходимости, слишком большое приведет к тому, что все подаваемое напряжение будет падать на резисторе и пробой никогда не будет достигнут.

File{grid = "@grid@" doping = "@doping@" plot = "@dat@"
 current = "@plot@" output = "@log@" }

Electrode{ {name = "source" voltage = 0.0} {name = "gate" voltage = 0.0} {name = "drain" voltage = 0.0 resistor = 1e10} }

Physics{AreaFactor = @AreaFactor@ EffectiveIntrinsicDensity(Slotboom) Mobility(DopingDependence HighFieldSaturation Enormal) Recombination(SRH(DopingDependence Tunneling) CDL(DopingDependence Tunneling) Avalanche) Temperature = 300 } Physics(MaterialInterface="Oxide/Silicon") {charge(surfconc=@Nss@)}

Math{Extrapolate Iterations = 20 RelerrControl Derivatives
 NewDiscretization AvalDerivatives method = pardiso
 BreakCriteria{ Current(Contact="drain" AbsVal=1e-5) } }

Plot{DopingConcentration eDensity hDensity ElectricField ElectrostaticPotential

SpaceCharge SRHRecombination CDLRecombination AvalancheGeneration

TotalRecombination eCurrentDensity hCurrentDensity TotalCurrentDensity eGradQuasiFermi hGradQuasiFermi eDriftVelocity hDriftVelocity } Solve{Poisson Coupled { Poisson Electron Hole } QuasiStationary(InitialStep = 0.03 MaxStep = 0.04 MinStep = 1e-10 Goal { name = "drain" voltage = 250 }) {Coupled {Hole Electron Poisson} } }

Пробивное напряжение по рассчитанной ВАХ модели LDMOSструктуры рассчитывается в программе **INSPECT** под управлением следующего командного файла:

```
#-----#
gr_setTitleAttr "Vbr"
#------#
```

set dset @plot@ set data [file rootname \$dset] proj_load \$dset

cv_create IdVd "\$data drain InnerVoltage" "\$data drain TotalCurrent" y cv_display IdVd y

cv_setCurveAttr IdVd "IdVd" black solid 2 none 5 defcolor 1 defcolor

gr_setAxisAttr Y {Drain Current (A)} 16 {} {} black 1 16 0 10 0 gr_setAxisAttr X {Drain Voltage (V)} 16 {} {} black 1 16 0 5 0

#-----#

set VBR [cv_compute "vecvalx(<IdVd > , 1e-5)" A A A A] ft scalar Vbr \$VBR

Рис. 3.9. Выходная вольтамперная характеристика при $U_{_{34}} = 0 B$. При напряжении на стоке > 100 В наблюдается участок пробоя стокового p–n-перехода

3.3.5. Расчет межэлектродных емкостей

Поведение LDMOS-структуры моделируется в режиме малого сигнала на частоте 1 МГц при изменении напряжения на стоке от 0 В до 50 В (напряжение питания). Моделирование в режиме АС-анализа отличается от DC-анализа:

File{Grid = "@grid@" Doping = "@doping@" Plot = "@dat@" Current = "@plot@" }

Physics{ AreaFactor = @AreaFactor@ EffectiveIntrinsicDensity (Slotboom)

Mobility(DopingDependence HighFieldSaturationCV Enormal) Recombination(SRH(DopingDependence) CDL(DopingDependence)) Temperature = 300 } Physics(MaterialInterface="Oxide/Silicon") {charge(surfconc=@Nss@)} }

Сначала LDMOS-транзистор описывается как составная часть электрической схемы, для этого перед его именем ставится специальное слово Device, а все его описание заключено в фигурные скобки. Само описание аналогично случаю DC-анализа и включает секции Electrode, File и Physics. При этом файлы, указанные в секции File, относятся только к транзистору. Файлы всей системы указываются отдельно. Самих элементов схемы, а, следовательно, и блоков Device может быть несколько.

Секции Math и Plot формируются отдельно, а команды, прописанные в них, распространяются на расчет всей схемы (то есть являются глобальными):

Math{Extrapolate Iterations = 20 RelerrControl Derivatives NewDiscretization} Plot{ DopingConcentration eDensity hDensity ElectricField ElectrostaticPotential

SpaceCharge SRHRecombination CDLRecombination TotalRecombination eCurrentDensity hCurrentDensity TotalCurrentDensity eDriftVelocity hDriftVelocity }

Далее указываются глобальные выходные файлы: File{Output = "@log@" ACExtract = "@acplot@" }

В секции System схема собирается воедино, то есть определяются глобальные контакты и подключение контактов всех ее элементов между собой и глобальными. Для подключения элемента указывается его имя LDMOS, тип transistor и наименования его контактов в схеме drain=d. Далее к каждому контакту подключается источник напряжения. Указывается имя источника Vd, контакты схемы, между которыми он подключен («0» – электрическая земля), и начальное смещение dc = 0.

System{ "LDMOS" "transistor" (drain=d source=s gate=g) Vsource_pset vd (d 0){ dc = 0 }

Vsource_pset vs (s 0){ dc = 0 } Vsource_pset vg (g 0){ dc = 0 } }

Подобно реальным измерениям, для расчета емкостей сначала прикладывается постоянное напряжение сток-исток, равное напряжению питания 50 В, а затем поверх него подается переменный сигнал со стандартной частотой 1 МГц. В секции Solve команда Coupled заменена на ACCoupled, и при ее объявлении указываются следующие параметры:

StartFrequency – начальная частота подаваемого сигнала;

EndFrequency – конечная частота подаваемого сигнала;

NumberOfPoints – число различных частот, на которых проводится вычисления.

Добавление ключевого слова Decade означает, что изменение подаваемой частоты будет происходить в логарифмическом масштабе.

Далее командой Node задаются контакты, на которые подаётся сигнал, а команда Exclude исключает из AC-анализа источники напряжения. В конце прописывается рассчитываемая система уравнений:

Solve{ Poisson Coupled{ Poisson Electron Hole } Quasistationary(MaxStep=0.05 Minstep=1.e-7

Goal{ Parameter=vd.dc Voltage=50})

{ ACCoupled (StartFrequency=1e6 EndFrequency=1e6 NumberOf-Points=1 Decade

Node(d s g) Exclude(vd vs vg))

{ Poisson Electron Hole } } }

Полученный график зависимостей межэлектродных емкостей от напряжения на стоке относительно истока показан на рис. 3.10.

Межэлектродные емкости измеряются при $U_{cu} = 50$ В в программе **IN-SPECT** под управлением следующего командного файла:

#-----# gr_setTitleAttr "Capacity" #------#

set dset @acplot@ set data [file rootname \$dset] proj_load \$dset

gr_setAxisAttr X {Drain Voltage (V)} 16 {} {} black 1 16 0 5 0 gr_setAxisAttr Y {Capacitance (pF)} 16 {} {} black 1 16 0 5 0

##Cd

cv_create CddF "\$data NO_NODE v(d)" "\$data NO_NODE c(d,d)" y cv_createWithFormula Cdd "1e12*<CddF > " A A A A cv_display Cdd cv_setCurveAttr Cdd "Cdrain" black solid 2 none 5 defcolor 1 defcolor set Cd [cv_compute "vecmin(<Cdd >)" A A A] ft_scalar Cd \$Cd

##Cgd

cv_create CdgF "\$data NO_NODE v(d)" "\$data NO_NODE c(d,g)" y cv_createWithFormula Cdg "-1e12*<CdgF > " A A A A cv_display Cdg cv_setCurveAttr Cdg "Cgate-drain" black "long dashed" 2 none 5 defcolor

1 defcolor

set Cgd [cv_compute "vecmin(<Cdg >)" A A A A]
ft_scalar Cgd \$Cgd

##Cg

cv_create CggF "\$data NO_NODE v(d)" "\$data NO_NODE c(g,g)" y cv_createWithFormula Cgg "1e12*<CggF > " A A A A cv_display Cgg cv_setCurveAttr Cgg "Cgate" black dot-dashed 2 none 5 defcolor 1 defcolor set Cg [cv_compute "vecmin(<Cgg >)" A A A] ft_scalar Cg \$Cg

Рис. 3.10. Зависимость межэлектродных емкостей от напряжения сток-исток: 1 – входная (линия «точка-тире»),

2 – проходная (прерывистая линия), 3 – выходная (сплошная линия)

1. Боднарь Д. Мощные СВЧ-транзисторы и корпуса для российского и зарубежного рынков / Д. Боднарь // Электронные компоненты. – 2013. – № 1. – С. 62–68.

2. Бормонтов Е. Н. Мощные приборы на основе карбида кремния / Е. Н. Бормонтов, М. И. Черных // Энергия XXI век. – 2015. – № 2 (90). – С. 39–51.

3. Зи С. Физика полупроводниковых приборов : в 2 кн. / С. Зи ; пер. с англ. под ред. Р.А. Суриса. – М. : Мир, 1984. – Кн. 1. – 455 с. ; Кн. 2. – 455 с.

4. Зыков Д. Д. Системы автоматизированного моделирования и проектирования технологических процессов и технологических маршрутов производства СВЧ МИС, оптимизация производства (основы САПР Synopsys TCAD) : учебное пособие / Д. Д. Зыков, К. Ю. Осипов. – Томск : В-Спектр, 2010. – 76 с.

5. Коколов А. А. Обзор математических моделей СВЧ полевых транзисторов с высокой подвижностью электронов / А. А. Коколов, Ф. И. Шерман, Л. И. Бабак // Доклады Томского государственного университета систем управления и радиоэлектроники. – 2010. – № 2 (22). – С. 118–123.

6. Королев М. А. Технология, конструкции и методы моделирования кремниевых интегральных микросхем / М. А. Королев, Т. Ю. Крупкина, М. А. Ревелева. – М. : Бином, 2007. – Ч. 1 : Технологические процессы изготовления кремниевых интегральных схем и их моделирование. – 397 с.

7. Технология, конструкции и методы моделирования кремниевых интегральных микросхем : в 2 ч. / М. А. Королев [и др.]. – М. : Бином, 2009. – Ч. 2 : Элементы и маршруты изготовления кремниевых ИС и методы их математического моделирования. – 422 с.

8. Кузнецов Е. В. Мощные СВЧ LDMOS-транзисторы для беспроводных технологий передачи данных (Обзор) / Е. В. Кузнецов, А. В. Шемякин // Известия вузов. Электроника. – 2009. – № 6 (80). – С. 8–15.

9. Основы работы в среде приборно-технологической САПР ISE TCAD : учебно-методическое пособие / сост. : В. В. Асессоров [и др.]. – Воронеж : Лаборатория оперативной печати Воронежского государственного университета, 2006. – 61 с.

10. Полупроводниковые приборы СВЧ : учебное пособие / сост. : Ю. М. Нойкин, Т. К. Нойкина, А. А. Усаев. – Ростов-н/Д., 2014. – 116 с.

11. Проектирование и технология производства мощных СВЧтранзисторов / В. И. Никишин [и др.]. – М. : Радио и связь, 1989. – 144 с.

12. Радченко Д. Моделирование СВЧ-транзистора на основе эпитаксиальной гетероструктуры (НЕМТ) с помощью САПР Synopsys Sentaurus TCAD / Д. Радченко, К. Сбитнев, Н. Малеев // Производство электроники : технологии, оборудование, материалы. – 2009. – № 7. – С. 57–61. 13. Сайт фирмы Siborg System Inc. – Режим доступа: http://www.si-borg.com.

14. Сайт фирмы Silvaco. – Режим доступа: http://www.silvaco.com.

15. Сайт фирмы Synopsys. – Режим доступа: http://www.synop-sys.com/

16. Технология СБИС : в 2 кн. / под ред. С. Зи. – М. : Мир, 1986. – Кн. 1. – 404 с. ; Кн. 2. – 416 с.

17. Тихомиров П. Система Sentaurus TCAD компании Synopsys. Новое поколение приборно-технологических САПР / П. Тихомиров, П. Пфеффли, М. Зорзи // Электроника : Наука, Технология, Бизнес. – 2006. – № 7. – С. 89–95.

18. Шахнович И. Твердотельные СВЧ-приборы и технологии / И. Шахнович // Электроника : Наука, Технология, Бизнес. – 2005. – № 4. – С. 13–15.

Учебное издание

ПРИБОРНО-ТЕХНОЛОГИЧЕСКОЕ ПРОЕКТИРОВАНИЕ ЭЛЕМЕНТНОЙ БАЗЫ МОЩНОЙ СВЧ-ЭЛЕКТРОНИКИ

Учебно-методическое пособие

Составители: Алексеев Роман Павлович, Бормонтов Александр Евгеньевич, Быкадорова Галина Владимировна, Кожевников Владимир Андреевич

Редактор И. Г. Валынкина Компьютерная верстка О. В. Шкуратько

Подписано в печать 4.04.2016. Формат 60×84/16. Уч.-изд. л. 4,2. Усл. печ. л. 4,1. Тираж 25 экз. Заказ 121.

> Издательский дом ВГУ. 394000, г. Воронеж, пл. Ленина, 10

Отпечатано в типографии Издательского дома ВГУ. 394000, г. Воронеж, ул. Пушкинская, 3