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Abstract—Analytical expressions that characterize accuracy of joint signal parameters estimation for a

small-sized target in bistatic radar system are obtained. Influence of true parameters values on

probabilistic characteristics of their estimates is analyzed.
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Nowadays practical interest to bistatic radars, which configuration expects availability of distant in space

one transmitting and one receiving stations [1, 2], has significantly increased.

Configuration of bistatic radar is depicted in Fig. 1. Transmitter T, receiver R and target G form a

so-called bistatic triangle. We’ll call a line between T and R the base line, and a distance TR the base L of

radar. Further we consider a case of planar problem, when bistatic triangle’s plane T–G–R does not change

its orientation in space.

The present article aims to determine potential accuracy of jointly estimating velocity of a small-sized

target and time when target crosses the base line of a bistatic radar system.

Let’s assume that we have a small-sized target that creates shadow. We’ll also assume that receiver has

monochromatic wave with frequency f0 at its input. Using Kirchhoff method and Babine principle, one can

obtain the following expression for received signal [1]:

s t A f t
L

R ( ) cos� �

�

�

�

�

�

	




�

�



�

�

2 0�

�

� � �

�



�

�

�



�

�

�

�

�

�

�

�

�

�

�

�

�

2
2

2
2

0

2 2

2

A
f t

L V t�

�

�

�

�

�

sin
( )

, (1)

where A is amplitude multiplier, � is wavelength of probing signal; L is radar’s base, � �� d d LT R / is

radius of first Fresnel zon, dT and dR are distances from target to transmitter and receiver respectively at

time � when target crosses the base line, � is area of a small-sized target, V is absolute value of target’s

velocity.

Expression (1) is obtained using approximation of Fresnel diffraction of probing wave on the small-sized

target in the shape of a sphere. Under such configuration of bistatic radar system target is considered to be

small-sized when its area � and first Fresnel zone’s radius � satisfy the following inequality: � ��� .

Formula (1) may be also re-written as follows:

s t e t s tR sh( ) ( ) ( )� � , (2)
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As follows from (2), the received signal s tR ( ) is a sum of non-informative oscillation e(t) and informative

signal s tsh ( ). Informative signal s tsh ( ) is a consequence of shadow created by target. It contains information

on target’s velocity V, time � when target crosses the base line and first Fresnel zone’s radius �.

Due to target’s movement with respect to transmitter and receiver one may observe the Doppler effect. It

shows up in the fact that expression for informative signal s tsh ( ) contains target’s velocity. From formula (3)

it is easy to notice that informative signal appears to be frequency modulated according to linear law.

Phase of signal s tsh ( ) depends on first Fresnel zone’s radius, target’s velocity and time when target

crosses the base line. Informative signal’s amplitude in inversely proportional to second power of first

Fresnel zone’s radius and does not depend on parameters V and �. Thus, parameter � is in expressions for

amplitude and phase of informative signal s tsh ( ).

Let’s consider a problem of estimating parameters of received bistatic radar’s signal on the noise

background. We’ll assume that some realization of additive mixture that contains useful signal and noise is

observed on a fixed time interval [0, T]. By processing the observed realization it is necessary to estimate the

values of searched parameters. We’ll assume that the estimated signal’s parameters do not depend on time.

There exist various estimation approaches [3, 4] depending on prior knowledge of estimated parameters.

In this work maximum likelihood estimate for a quasi-determined signal’s parameters, which provides

maximum maximorum of logarithm of likelihood ratio’s functional.

Let’s determine potential accuracy of joint conditional estimations of three parameters: �, V, and �. Let’s

introduce into consideration a column-vector of estimated parameters

�

l V� ( , , )� �

T
, where the superscript

“T” denotes transposing.

Additive mixture of useful signal s t s t lR ( ) ( , )�

�

0 and noise n(t) may be expressed as follows:
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T
is a column-vector of estimated parameters’ true values; and T is observation

interval. We’ll assume that noise n t( ) is represented by a realization of Gaussian random process with zero

mean and correlation function

K t t N t t( , ) ( / ) ( )1 2 0 1 22� � ,

where N 0 is physical spectral power density of noise, and  (*) is Dirac’s delta function.

Expression for functional of likelihood ratio may be represented as follows:
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Using expression for output signal of optimal receiver [3], logarithm of likelihood ratio functional may

be written as follows:
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where we have introduced into consideration
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signal and noise components of logarithm of likelihood ratio functional respectively;
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� �
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corresponds to signal function’s maximum. Here
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Let’s estimate infinitesimal order of quantity % for some values of target’s velocity, probing wave

frequency and bistatic radar system’s parameters. For example, for V = 20 m/s, f0 = 900 MHz, L = 200 m and

T = 3 s we obtain | |% ~10
–6

. Consequently, we’ll neglect the dependence on % in formula (4).

Maximum likelihood estimate

�

l Vm m m� ( ,� , � m )
T

may be found as a solution of a system of likelihood

equations

*

*

�

�

Z l

li
l lm

( )

�

� �

0, i �1 2 3, , . (7)

We’ll search for solution of this system assuming absence of abnormal errors and considering that

estimate

�

lm is a point inside some priory defined area of possible values for vector

�

l . Solving system of

equations (7) using small parameter method (we use the quantity inversely proportional to signal-to-noise

ratio as the small parameter) we obtain that in first approximation the maximum likelihood estimates are

unbiased and their correlation matrix is reciprocal to Fisher matrix [3]:
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Considering (4) one may state that Fisher matrix F components have the following appearance:
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n = 2,3,4. (9)

Let’s calculate algebraic complements for the first row of Fisher matrix:
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Determinant of matrix F may be represented as follows:
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Considering the last expression, in a general case determinant of Fisher matrix has non-zero value. As

was mentioned above, the value of first Fresnel zone’s radius is present in expressions for amplitude and

phase of signal (3). However, during detection of received signal (1) its amplitude multiplier will be subject

to changes connected with parameters of detector’s components. As a result revealing the dependence of

amplitude of informative signal s tsh ( ) on the value of first Fresnel zone’s radius in practice appears to be a

complex task. If we decide not to account for dependence of informative signal’s amplitude on quantity �

during calculation of Fisher matrix (8) components, then only expression for matrix F element F11 will

change. Then

F F11 11� +

and the new Fisher matrix +F becomes singular: det + �F 0. Thus, determinant of Fisher matrix (8) has

non-zero value only due to consideration of dependence of informative signal s tsh ( ) amplitude on first

Fresnel zone’s radius.

Dispersions of joint estimates of parameters �, V, and � appear to be diagonal elements of correlation

estimates matrix, which is reciprocal to Fisher matrix F. Determinant of Fisher matrix equals ( )detF
�1

and

for values� �/ 0

2
< 1 becomes rather large. Analysis of determinant (10) considering (6) shows that accuracy

of joint estimates of parameters �, V, and� of signal (1) is low and get even worse with decreasing the ratio of

target’s area to second power of first Fresnel zone’s radius � �/ 0

2
.

A situation is possible when first Fresnel zone’s radius is known and is not a measured parameter. Let’s

determine accuracy of joint estimate of two parameters, namely target’s velocity and time when it crosses

the base line, using the maximum likelihood criterion.

When estimating parametersV and� signal (4) and noise (5) functions will get the following appearance
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We’ll find first and second moments of errors for joint estimates of parameters V and � as well as

correlation of estimates using the following expressions:
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where statistical averaging operation 1 2* is performed for all possible noise realizations under fixed values of

estimated parameters, bV and b
�

are conditional biases,
1

DV and D
�

are conditional dispersions of

estimates of parametersV and �, respectively, KV� is correlation of estimates.

Matrix (11) is non-singular

det0 , , ,� # �4 0

4 2 0

6

0

8
4 2 3

2
$

�

( )
( )

V T
1 2 1

0

0

2

� # �#

�

�

�

�

�

�

	

	

�

v

V T
( ) ,

while correlation matrix K for estimatesVm è � m , which is reciprocal to it, is given by

K
D K

K D

V V

V

�

�

�

�

�

�

	

�

� �

, 0 & �K E,

where E is a unit 2&2 matrix.

Calculations indicate that estimatesVm and � m are unbiased. We’ll use dispersions of estimates

D

T V
V �

# �

1

2
4

0

2

0

4

0

2

2

4 2 3

2
$

� ,

, , ,

1 2 1
0

0

� # �#

�

�

�

�

�

�

	

	

v

V T
( ) , (12)

RADIOELECTRONICS AND COMMUNICATIONS SYSTEMS Vol. 54 No. 10 2011

526 TRIFONOV et al.

1
With respect to true values of estimated parameters.
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as parameters that characterize accuracy of joint estimation. Here
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is correlation of estimates.

According to (12), (13), dispersions of joint estimates of target’s velocity and time when it crosses the

base line asymptotically converge to zero with increasing signal-to-noise ratio $ 0, duration of observation

interval T and target’s velocity V0. With decreasing the value of # dispersions DV and D
�

increase.

Consequently, considering (6), accuracy of joint estimates of parameters V and � decreases as the value of

ratio � 3 �0

2
becomes smaller.

Let’s introduce parameter 4 �� / T, which is time when target crosses the base line normalized by

duration of observation interval. 4 �0 0� / T will denote true value of parameter 4. When 0 10� �4 target

reaches radar’s base line within the duration of observation interval [ , ]0 T . Moreover 4 0 = 0, 0.5, 1

correspond to the base line crossing time in the beginning, in the middle and in the end of observation

interval, respectively. Negative values of parameter 4 0 correspond to cases, when during observation

interval [ , ]0 T target moves away from radar’s base line, and when 4 0 > 1 it moves towards it.

We’ll re-write formula (9) as follows:

,n

n n n

n
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( )

1 1

2 1

0

1

0

1
4 4

, n = 2,3,4.

Dependence of correlation coefficient rV� of target’s velocity and base line crossing time estimates on 4 0

is depicted in Fig. 2. Analysis of the presented dependence allows making a conclusion that when 4 0 = 0.5

estimates are uncorrelated. With increasing the value of | . |4 0 0 5� correlation coefficient between estimates

of parametersV and � grows. This leads to increased dispersions DV and D
�

, i.e. to decreased accuracy of

joint estimation of parametersV and �.

Correlation coefficient of estimates increases with increase of parameter 4 0, so that rV� < 0 when 4 0 05� .

and rV� > 0 when 4 0 055 . . Let’s find a physical meaning of the sign of correlation coefficient rV� .
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In cases 4 0 < 0 or 4 0 > 1 target does not reach radar’s base line on the observation interval [ , ]0 T . When

4 0 0� target moves away from receiver R, and when 4 0 > 1 approaches it. In this case the sign of correlation

coefficient rV� means direction of target on the observation interval [ , ]0 T .

When 0 10� �4 target crosses radar’s base line at time � 40 0� T. On the time interval [ , ]0 04 T target

approaches receiver and on the interval [ , ]4 0T T it moves away from it. Distance 6 �V T0 , which target

passed during time of observation, may be represented as 6 6 6� �1 2, where 61 0 0� 4 V T and

62 0 01� �( )4 V T are distances covered by target before and after crossing the base line.

When 0 050� �4 . distance62 is greater. When 05 10. � �4 distance61 is greater. In the mentioned values

intervals of 4 0, correlation coefficient rV� has the opposite sign:

rV� < 0 when 0 050� �4 . and

rV� > 0 when 05 10. � �4 .

Thus, when0 10� �4 the sign of correlation coefficient characterizes target’s movement to (rV� > 0) or away

(rV� < 0) from receiver and the greater distance61 or62.

Until now we considered accuracy of joint estimation of target’s velocity and base line crossing time.

One may show that dispersions dV and d
�

for separate estimates of parameters V and � are given by
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Calculations show that similarly to the case of joint estimations separate estimates of parametersV and �

are unbiased, and their dispersions asymptotically converge to zero with increasing signal-to-noise ratio$ 0,

duration of observation interval T and target’s velocityV0. Accuracy of separate estimation of parameters V

and � gets worse with decreasing the value of ratio � �/ 0

2
.

According to (12)–(15), ratios D dV V/ and D d
� �

/ of dispersions of joint and separate estimates remain

the same and are functions of only 4 0:

7
� �

� �D d D dV V/ / �

�

�

�

, ,

, , ,

2 4

2 4 3

2 2

0

1

1 rVt ( )4

. (16)

According to (16), parameter7 increases with increasing the absolute value of correlation coefficient rV� .

Dependence of parameter7 on 4 0 is depicted in Fig. 3. When 4 0 = 0.5 parameter7 �1, i.e. dispersions of

joint estimates DV and D
�

coincide with those of separate estimates dV and d
�

. Parameter 7 grows with

increasing | . |4 0 0 5� .
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In the case of a small-sized target accuracy of joint estimation of first Fresnel zone’s radius, target’s

velocity and base line crossing time is low and decreases as target’s area gets smaller. When estimating two

parameters, namely V and �, accuracy of joint estimation improves with increasing value of V T0 0/ � . If

target crosses radar’s base line in the middle of observation interval, joint estimates of parametersV and� are

uncorrelated. Dispersions DV and D
�

of joint estimates asymptotically converge to zero with increasing

signal-to-noise ratio $ 0, duration of observation interval T and target’s velocity V0. Accuracy of joint

estimates of parameters V and � gets worse with decreasing the ratio of target’s area to second power of first

Fresnel zone’s radius.

The obtained results may be used when solving various radio engineering problems that deal with

classification of moving targets using diffraction signals, when performing automatic control of objects’

velocity and their crossing of some conditional boundary, in radio monitoring systems, etc.

REFERENCES

1. D. V. Nezlin, V. I. Kostylev, A. V. Blyakhman, et al., Bistatic Radars: Principles and Practice (Wiley,

Chichester, 2007) [ed. by M. Cherniakov].

2. N. Willis and H. Griffiths (ed.), Advances in Bistatic Radar (SciTech Publishing Inc., 2007).

3. Ye. I. Kulikov and À. P. Trifonov, Estimation of Signal’s Parameters on Noise Background (Sov. Radio,

Moscow, 1978) [in Russian].

4. Ye. I. Kulikov, Methods of Measuring Random Processes (Radio i Svyaz’, Moscow, 1986) [in Russian].

RADIOELECTRONICS AND COMMUNICATIONS SYSTEMS Vol. 54 No. 10 2011

POTENTIAL ACCURACY OF JOINT SIGNAL PARAMETERS ESTIMATES 529


