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Abstract—Quasi-likelihood and maximum likelihood algorithm for estimating duration of a signal with

arbitrary share and unknown amplitude are synthesized. Operation efficiency characteristics for the

synthesized algorithms are determined. Operation of the synthesized algorithms is verified and

applicability limits for asymptotic expressions are obtained using computer emulation
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The problem of estimating duration of a signal observed on the noise background is topical in all

applications of communications, radar and navigation theory having been discussed in literature many

times. Algorithms for estimating duration of a rectangular pulse are studied in [1, 2], while in [3] the same

problem is solved for a signal of arbitrary shape. However in a number of practical applications the power of

received signal appears to be unknown. Hence is it reasonable to consider algorithms that allow estimating

duration of a signal with unknown amplitude. In [4] algorithms for processing the received signal with

unknown duration and amplitude are studied only for the case of rectangular pulse. In this paper we solve the

problem of synthesizing and analyzing optimal and quasi-optimal algorithms for estimating duration of

signals with arbitrary shape and unknown amplitude.

Let’s assume that we observe a realization
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and Gaussian white noise n t( ) with single-sided spectral density N 0 on the time interval [0, T]. Here a0 and

� 0 refer to the unknown amplitude and duration of the received signal respectively, while function f t( )

describes its shape. Signal’s duration takes a value from priory defined interval � � [ , ]T T1 2 . Given the

observed realization �( )t it is necessary to obtain duration estimate � 0 for the useful signal (1).

In order to synthesize the duration estimation algorithm we’ll use the maximum likelihood (ML) method

[1, 2], according to which the duration estimate coincides with position of absolute (greatest) maximum of

logarithm of likelihood ratio functional (LRF). However if amplitude and duration are unknown, LRF

logarithm depends on two unknown parameters [1, 2]
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Consequently, we have prior parametric ambiguity with respect to amplitude. This ambiguity may be

overcome by substituting in expression (2) some of its possible values. These values may be fixed as well as

estimated from the observation. In this way one can obtain a series of estimation algorithms (possibly
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non-optimal). Further we consider estimation algorithms that provide better efficiency but require complex

hardware implementation.

One way of overcoming prior parametric ambiguity with respect to amplitude consists in using

quasi-likelihood (QL) estimation algorithm. A quasi-likelihood receiver forms LRF logarithm (2) for some

expected amplitude a
*

and all possible duration values � � [ , ]T T1 2
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and finds a QL duration estimate as a position of absolute maximum of the decision statistics (3)

� �
* *

( )�argsupL . (4)

Structure of QL measurer coincides with the structure of maximum likelihood duration estimator for a

signal with priory known amplitude [3], except for the amplitude of reference signal which on this case does

not equal the true value of the received signal’s amplitude.

Let’s analyze QL algorithm of duration estimation. According to (3) the random process L
*
( )� is

Gaussian. Hence to describe it we need only expected value and correlation function. By averaging we

obtain the expected value
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q( )� is signal-to-noise ratio (SNR) at ML receiver’s output for a signal with duration �, while quantity

� a � 
( ) /
*

a a a0 0 denotes relative difference of expected amplitude from its true value. Obviously, when

| |� a �1the expected value (5) reaches a maximum value in point � 0. Consequently, in absence of noise the

QL estimate (4) coincides with the true value of signal’s duration � 0, and condition | |� a �1 is a sufficient

condition of the QL estimate’s consistency.

Let’s introduce a new variable� �� q( ) so that�� [ , ]� �1 2 and �1 1� q T( ), �2 2� q T( ). Similarly to [3],

we assume that function f t( )describing signal’s shape equals zero only on a segment of interval [ , ]0 � , which

has zero measure. Then q( )� (6) is a monotonically increasing quantity and the following equality is true:

q(min( , ))� �1 2 � min( ( ), ( ))q q� �1 2 . Consequently, the decision statistics (3) as a function of variable� may

be represented by

L L
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where � �0 0� q( ), � �( ) is Gaussian random process with zero expected value and correlation function

B( , ) ( ) min( , )� � � � �1 2

2
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RADIOELECTRONICS AND COMMUNICATIONS SYSTEMS Vol. 54 No. 11 2011

582 TRIFONOV et al.



while � �( ) is determined by solving the equation q( )� �� .

According to (6) a random quantity
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is connected with duration estimate (4) by a one-to-one transformation. Consequently, conditional
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F u v21

*
( , , )� is a two-dimensional distribution function of absolute maxima for a random process� �

*
( ). To

find the function (11) we’ll use the methodology [2]. According to (7), (8) the random process � �
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( ) is

Markovian with displacement and diffusion coefficients
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Consequently, function (11) describes probability that Markovian random process � �
*
( ) will not reach

boundaries 0 and u on the interval �� [ , ]� �1 and boundaries 0 and v on the interval �� [ , ]� �2 . Let’s

introduce an additional random process
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which is Gaussian and Markovian with displacement and diffusion coefficients
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Then probability (11)
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represents probability that Markovian random process y
*
( )� will not reach boundaries 0 and �� on the

interval �� [ , ]� �1 2 . According to [5] the searched value (13) may be given by
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HereW y( , )� is a solution of Fokker–Planck–Kolmogorov (FPK) equation [2, 5]
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Using mirroring method with sign inversion [5] we obtain solution of equation (15) with coefficients (12)

separately for cases� �� [ , ]�1 0 and� �� ( , ]0 2� . Substituting the solutions into expression (14) and then in

(10) yields an expression for probability density of random quantity (9)
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Since � �� q( ), from (4) and (9) we obtainW W q q q� �� � � � �( | ) ( ( )| ( )) ( )0 0� 0 . Using this expression and

considering (18), let’s write down expressions for conditional displacement and dispersion for QL duration

estimate (4)
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Let’s consider asymptotic behavior of probability density (17) and displacement and dispersion (19) with

increasing SNR. Let’s introduce a normalized variable (or a generalized QL duration estimate)
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Let’s assume that in (21) K1 2 � and K 2 2 �. This specifically occurs when� �0 0� 2 �q( ) and the

values of T1 and T2 are fixed. Considering (18) we find a limiting probability density of normalized variable
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It is known from [1, 2] that with increasing SNR� 0 the QL estimate �
*

converges in mean-square sense

to maximum expected value location for the decision statistics (5), which with | |� a �1coincides with the true

value of duration � 0. Hence let’s consider the behavior of function q( )� in the neighborhood of point � 0.

Let’s expand (6) into Taylor series with respect to � in the neighborhood of point � 0 limiting our

consideration to first infinitesimal order terms

q q f N( ) ( ) ( )( ) /� � � � �5 � 
0

2

0 0 02 � � 
q( ) ( ) /� 6 � � �0 0

2

0 0,

where 6 � �0

2 2

0 0 02� f N( ) / . Then for normalized variable 1we obtain the following expression:
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Using (22) and (23) we may express asymptotic values of duration estimate’s displacement and

dispersion as follows:
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If a a
*
� 0, then � a �0 and QL duration estimate (4) coincides with ML estimate for a signal with priory

known amplitude [3]. When � a �0 expressions (24) appear as follows:

Â0 0� , V0 0

2

0

4
26� � 6/ (25)

and coincide with expressions for displacement and dispersion of ML duration estimate for signal with

priory known amplitude obtained in [3].

In Figs. 1 and 2 solid lines represent dependences of normalized displacement

b B V( ) ( | ) / ( | )
* *

� � � � �a a a� 0 0 and dispersion v V V( ) ( | ) /
*

� � �a a� 0 0 for QL duration estimate on � a ,

respectively. As follows from Figs. 1 and 2, deviation of expected amplitude’s value from the true value

leads to a significant degradation of estimation quality.

In order to improve precision of duration estimation we can use ML algorithm based on finding position

of LRF logarithm’s maximum

� �m L�argsup ( ), (26)

where L L a L am

a

( ) ( , ) ( , )� � �� � sup is LRF logarithm, where instead of unknown amplitude its maximum

likelihood estimate am is used, which is identical to maximizing expression (2) with respect to amplitude.

Maximization of LRF logarithm (2) with respect to amplitude yields
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Fig. 1. Fig. 2.
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Expression (27) defines the structure of receiving unit. Receiver should generate a random process (27)

for all possible duration values and calculate ML duration estimate as a position of its maximum. In Fig. 3 a

block-diagram of ML duration measurer is depicted with the following denotations: I are integrators on the

time interval [ , ]0 t , t T� [ , ]0 2 , DU is decision unit searching for position of input signal’s maximum on the

time interval [ , ]T T1 2 .

Let’s consider an auxiliary random process for ML estimation algorithm
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This process is Gaussian and has expected value
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where function q( )� is defined in (6).

In (28) let’s pass to a new variable l q q� ( ) / ( )� � 0 , l L L� [ , ]1 2 , L q T q1 1 0� ( ) / ( )� , L q T q2 2 0� ( ) / ( )� .

Then for random process (28) as a function of variable l we can write the following expression:
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Here �( )l is determined by solving equation q q l( ) / ( )� � 0 � , while:( )l is a standard Winner process. Using

random process (28), the decision statistics (27) may be represented as a function of variable l
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where z q0

2

0� ( )� is SNR for received signal at receiver’s output. In case of large SNR the last summand in

(29) may be neglected leaving us with approximate expression
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Let’s perform another substitution in (30):� �� �q l z l( )0 0
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This function represents a Gaussian random process with expected value
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and correlation function
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The correlation coefficient for decisions statistics (31) R( , ) min( , ) /� � � � � �1 2 1 2 1 2� satisfied the

condition R x y( , )� R x t R t y( , ) ( , ), x t y� � [5, 6]. Consequently, the random process (31) is a Markovian one

with displacement and diffusion coefficients [5, 6]
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Under large SNR maximum of decision statistics (31) is located in the neighborhood of its expected

value’s maximum [2]. The expected value (32) reaches its maximum value when � �� 0. Let’s introduce a

variable > � � �� 
( ) /0 0, whose absolute value decreases with increasing SNR � 0 0

2
� z , and rewrite

expression for displacement and diffusion coefficients
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Since > 2 0 when z0 2 � the decision statistics (31) in the neighborhood of point � �� 0 may be

approximated by a Gaussian Markovian process � �( ) with displacement and diffusion coefficients
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We’ll use this approximation on the whole interval of possible parameter�� [ , ]� �1 2 values. According

to (6) random quantity � � �m �argsup ( ) is connected with duration estimate �m (26) by a one-to-one

transformation. Consequently, conditional probability densityW� � �( | )0 of ML duration estimate� m may be

expressed in terms of probability density W� � �( | )0 for the random quantity �m . An expression similar to
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(10) is applicable to probability density W� � �( | )0 , where by F u v21
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( , , )� we mean two-dimensional

distribution function of absolute maxima for random process � �( ). We should note that when � a �0
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Consequently, assuming� �( ) in (17) we may obtain distribution of maximum’s location for random process
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(34)

while the limiting shape of probability density (34) with increasing SNR may be obtained from expression

(22) when � a �0

� �W W� ��
� �

0 0
0

2

2�

&

'
(

)

*
+ / ,

� � � �3 4W x x x0 3 2 1 3 2( ) exp | | | |/� 
/ � �� 
/ | |/x 2 1.

Correspondingly, assuming � a �0 in (24) we obtain asymptotic expressions for displacement and

dispersion of ML duration estimate of signal with unknown amplitude

� �Â ma � � 0 0� ,

� �V N a fa � � � 6 �
*

/ / ( )0 0

2

0

4

0

2

0

4 4

026 13 2� � .

These expressions coincide with similar ones in [3] for ML duration estimate (25) when the signal’s

amplitude is known. Consequently, absence of prior knowledge on signal’s amplitude has no influence on

limiting precision of ML estimate of signal’s duration. This circumstance allows interpreting dependences

in Figs. 1 and 2 as a gain in precision for ML algorithm (26) (Fig. 3) when compared to QL estimation

algorithm (4).

In order to verify operation capability of the synthesized estimation algorithms and to determine

applicability limits for the obtained asymptotic expressions for estimate’s dispersion and displacement

statistical simulations of QL and ML algorithms were carried out on a PC for rectangular pulse with inclined

vertex [7]. The signal’s shape was defined by the following linear function:

f t bt T b b( ) [ / ] / /� � � �1 1 32

2
.

Parameter b characterizes inclination of the vertex. Multiplier ( / )
/

1 3
2 1 2

� �



b b is introduced to retain

the same energy for signals with different durations and inclinations. For modeling purposes of the QL

algorithm the LRF logarithm (3) was given by

L S N
* * *
( ) ( , ) ( )? ? ? ?� �0 ,
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,

where ? �� / T2, z a T Nr

2

0

2

2 02� / is maximum possible SNR for the received signal. During modeling with

step @?�



10
6

samples of function N
*
( )? were generated, using which implementation of LRF logarithm

was approximated using step function with maximum mean-square error of> �0.1. Discrete samples of LRF

logarithm were represented by

L n S n n zr

* *
( ) ( , ) ( ) /@ @ @ @? ? ? � ?� � �0 1 2a

$ � � �

�

A( ) / /1 1 3
2

1

bk x b bk

k

n

@? ,

where x k are Gaussian statistically independent quantities with zero expected value and unit dispersion,

n n n� 1 2, , n1 1� / B ?@ , n2 1� / @?, n0 0� ? ?/ @ , B �T T2 1/ is dynamic range of unknown duration change.

During ith experiment using samples L ni

*
( )@? the following quantities were generated

n L ni i

* *
( )�argsup @? , ? ?i in

* *
� @ .

In the process of modeling N �10
5

tests were conducted. Experimental values for QL duration

estimate’s displacement and dispersion were calculated using the following formulas:

B
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For modeling purposes of the ML algorithm the LRF logarithm (27) was given by

! "
L

z S N

b b

r
( )

( , ) ( )

( / )

?
? ? ?

? ?
�

�

� �

0

2

2 2
2 1 3

,

S ( , ) min( , )? ? ? ?0 0�

! "$ � �1 30

2 2

0b bmin( , ) min ( , ) / /? ? ? ? 1 3
2

� �b b / ,
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During modeling with step @?�



10
6

samples of function N( )? were generated, using which

implementation of LRF logarithm was approximated using step function with maximum mean-square error

of > � 0.1. Discrete samples of LRF logarithm were represented by
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During ith experiment using these samples the following quantities were generated

n L nmi i�argsup ( )@? , ? ?mi min� @ .

In the process of modeling N �10
5

tests were conducted. Experimental values for ML duration

estimate’s displacement and dispersion were calculated using the following formulas:

B
T

N
n nm mi

i

N
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�
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0

1

@?
( ),

V
T

N
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Statistical simulation modeling results are depicted in Figs. 1 and 2. Circles, squares and triangles denote

dependences of normalized displacement B V
* *

/ and dispersionV Vm

*
/ , obtained during modeling for

rectangular pulse with inclined vertex b �1 in case of various SNR values. Circles, squares and triangles

correspond to SNR z r �5, z r �10, and z r �20, respectively. It was assumed that true value of signal’s

duration lies within the priory known interval, while dynamic range of duration change was B �8. As follows

from Figs. 1 and 2, with increasing SNR experimental dependences approach the theoretical ones, and the

range of possible� a values providing adequate description of experimental values by asymptotic expression

for displacement and dispersion increase as well.

The obtained expressions for characteristics of different duration estimation algorithms for a signal with

unknown amplitude allow making a well-grounded decision when choosing the estimation algorithm to be

used depending in the available information on signal’s amplitude and requirements to simplicity of

implementation and its precision.
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