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ESTIMATION OF THE APPEARANCE AND DISAPPEARANCE TIMES
OF UNKNOWN-AMPLITUDE SIGNALS

A.P.Trifonov, ∗ Yu. É. Korchagin, and
P.A.Kondratovich UDC 621.321

We synthesize quasi-likelihood, maximum-likelihood, and quasi-optimal algorithms for estimating
the appearance and disappearance times of an arbitrary-shaped unknown-amplitude signal. The
asymptotic characteristics of the estimates are found. The synthesized algorithms are statistically
simulated on a computer.

1. INTRODUCTION

The problem of estimating the times of appearance and disappearance of a signal observed against
the noise background is topical for many applications of statistical radiophysics, radar, and seismology [1–
5]. The problem of estimating the times of a jump-like signal variation is considered in [2]. However, the
algorithms of [2] require solution of complicated nonlinear stochastic differential equations and use a large
amount of a priori information. The algorithms for estimating the appearance and disappearance times
of a rectangular pulse are studied in [3], whereas an arbitrary-shaped deterministic signal with unknown
(or arbitrary) appearance and disappearance times, which is observed against the background of additive
Gaussian white noise in the case of continuous observation time is discussed in [4, 5]. However, the received-
signal power is often unknown in practical applications. Therefore, it is expedient to consider algorithms for
estimating the appearance and disappearance times of a signal with unknown amplitude. In this work, using
the maximum-likelihood method, we synthesize algorithms for estimating the appearance and disappearance
times of an arbitrary-shaped deterministic signal with unknown amplitude. For the synthesized algorithms,
we find their operation-efficiency characteristics whose accuracy increases with increasing signal-to-noise
ratio (SNR).

The signal with unknown appearance and disappearance times can be written as

s(t, a, θ1, θ2) =

{
af(t), θ1 ≤ t ≤ θ2;

0, t < θ1, t > θ2,
(1)

where f(t) is an a priori known continuous function which describes the signal shape, a is the amplitude,
and θ1 and θ2 are the unknown appearance and disappearance times, respectively, which take their values
in the a priori intervals

θi ∈ [θimin, θimax], i = 1, 2.

To exclude that the signal can disappear before its appearance, we put θ1max < θ2min. It is assumed that
the function describing the signal shape satisfies the condition f(θi) �= 0.
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An arbitrary process
ξ(t) = s(t, a0, θ01, θ02) + n(t)

, which is observed in the time interval [0, T ], is an additive mixture of the useful signal s(a0, θ01, θ02) and
Gaussian white noise n(t) with one-sided spectral density N0. Here, a0, θ01 and θ02 are the true values of the
amplitude and the appearance and disappearance times, respectively, which are unknown at the reception
point. On the basis of the observed process ξ(t), the receiver should form the estimates of the appearance
and disappearance times of useful signal (1).

If the amplitude of useful signal (1) is a priori known, one can use an estimation algorithm based on
the maximum-likelihood method, which was synthesized in [4]. According to this algorithm, the estimates
of the appearance and disappearance times coincide with the coordinates of the maximum of an logarithm
of the likelihood-ratio functional (LRF) [6]:

L(θ1, θ2) =
2a0
N0

θ2∫
θ1

ξ(t)f(t) dt− a20
N0

θ2∫
θ1

f2(t) dt.

Hereafter, the first term is the stochastic integral in the Ito sense. The characteristics of the joint maximum-
likelihood estimates of the appearance and disappearance times, i.e., the probability densities, biases, and
variances were obtained in [5]. However, if both the appearance and disappearance times and the amplitude
are unknown, then the LRF logarithm depends on three unknown parameters [6]

L(a, θ1, θ2) =
2a

N0

θ2∫
θ1

ξ(t)f(t) dt− a2

N0

θ2∫
θ1

f2(t) dt. (2)

If the unknown amplitude a in Eq. (2) is replaced by its certain values, then one can obtain some (prob-
ably, nonoptimal) algorithms for estimating the appearance and disappearance times. These values of the
amplitudes fixed or can be determined from realizations of the observed data. The resulting estimation
algorithms, which are considered below, differ in their efficiency and degree of simplicity of the hardware or
software realization.

2. QUASI-LIKELIHOOD ESTIMATION ALGORITHM

Using the quasi-likelihood estimation algorithm is a way for overcoming the a priori parametric
uncertainty with respect to the amplitude [7]. The quasi-likelihood receiver generates the LRF logarithm
given by Eq. (2) for some expected amplitude a∗ and all possible appearance and disappearance times

L∗(θ1, θ2) =
2a∗

N0

θ2∫
θ1

ξ(t)f(t) dt− a∗2

N0

θ2∫
θ1

f2(t) dt. (3)

Then the receiver finds the quasi-likelihood estimates of the appearance and disappearance times as points
of the absolute (largest) maximum of the decision statistic in Eq. (3):

(θ∗1, θ
∗
2) = arg supL∗(θ1, θ2). (4)

According to Eq. (4), the receiver should generate a two-dimensional random field given by Eq. (3) for
all possible values of the unknown appearance and disappearance times. Therefore, its hardware realization
turns out to be sufficiently complicated in the general case. Indeed, search for the quantities in Eq. (4)
assumes the development of a structure that is multichannel with respect to both unknown parameters.
However, the hardware-realization difficulties for the quasi-likelihood estimation algorithm given by Eq. (4)
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can partially be avoided if, by analogy with [4], the random field in Eq. (3) is represented as the sum
L∗(θ1, θ2) = L∗

1(θ1) + L∗
2(θ2) of two random processes. The first process depends only on the appearance

time θ1, while the second process depends only on the disappearance time θ2

L∗
1(θ1) =

2a∗

N0

θ∫
θ1

ξ(t)f(t) dt− a∗2

N0

θ∫
θ1

f2(t) dt, (5)

L∗
2(θ2) =

2a∗

N0

θ2∫
θ

ξ(t)f(t) dt− a∗2

N0

θ2∫
θ

f2(t) dt, (6)

where θ is an arbitrary point which belongs to the interval (θ1max, θ2min).

According to Eqs. (5) and (6), the random processes L∗
1(θ1) and L∗

2(θ2) are statistically independent
since they are integrals of white noise over the nonoverlapping intervals. Therefore, the locations of maxima
of the random field L∗(θ1, θ2) with respect to the variables θ1 and θ2 coincide with the locations of maxima
of the random processes L∗

1(θ1) and L∗
2(θ2), respectively. As a result, for the quasi-likelihood estimates of

the appearance and disappearance times, we can write

θ∗j = arg supL∗
j(θj), θj ∈ [θjmin, θjmax],

where j = 1, 2. The block diagram of a quasi-likelihood meter of the appearance and disappearance times
coincides with that of a maximum-likelihood meter described in [4] (see the dashed part of Fig. 1 in [4]), where
the product a∗f(t) should be used instead of the function f(t). Writing the decision statistic as a sum of two
statistically independent random processes, we can not only propose a sufficiently simple hardware realization
of the quasi-likelihood meter, but also analyze the quasi-likelihood algorithm for estimation according to
the method of [5]. For a complete statistical description of the decision statistic, it suffices to find the
mathematical expectations and the correlation functions of Gaussian independent random processes (5)
and (6). Performing the averaging, we obtain the mathematical expectations

S∗
1(θ1) = 〈L∗

1(θ1)〉 = (1 + δa)Q[max(θ01, θ1), θ]− (1 + δa)
2 Q(θ1, θ)/2,

S∗
2(θ2) = 〈L∗

2(θ2)〉 = (1 + δa)Q[θ,min(θ02, θ2)]− (1 + δa)
2 Q(θ, θ2)/2

and the correlation functions

B∗
1(θ11, θ21) = 〈[L∗

1(θ11)− S∗
1(θ11)] [L

∗
1(θ21)− S∗

1(θ21)]〉 = (1 + δa)
2 Q[max(θ11, θ21), θ],

B∗
2(θ12, θ22) = 〈[L∗

2(θ12)− S∗
2(θ12)][L

∗
2(θ22)− S∗

2(θ22)]〉 = (1 + δa)
2 Q[θ,min(θ12, θ22)],

where δa = (a∗ − a0)/a0 is a quantity characterizing the relative deviation of the expected amplitude a∗

from its true value a0. In what follows, the quantity δa will be called the detuning of the quasi-likelihood
meter with respect to the amplitude, and the quantity

Q(θ1, θ2) =
2a20
N0

θ2∫
θ1

f2(t) dt (7)

will be called the SNR at the output of the maximum-likelihood receiver for the received signal with the
appearance and disappearance times θ1 and θ2, respectively.

Let f(t) can turn to zero only in a zero-measure part of the interval [θ1min, θ2max]. Then Q(θ1, θ)
is a monotonically decreasing function of the argument θ1, Q(θ, θ2) is a monotonically increasing function
of θ2 and the equalities Q(x, θ) = −Q(θ, x), Q[max(x, y), θ] = min[Q(x, θ), Q(y, θ)], and Q[θ,min(x, y)] =
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min[Q(θ, x), Q(θ, y)] take place. Using the properties of function (7), we can rewrite the mathematical
expectations and the correlation functions of the processes given by Eqs. (5) and (6) in the form

S∗
j (θj) = (1 + δa)min[(−1)j Q(θ, θ0j), (−1)j Q(θ, θj)]− (1 + δa)

2 (−1)j Q(θ, θj)/2,

B∗
j (θ1j , θ2j) = (1 + δa)

2 min[(−1)j Q(θ, θ1j), (−1)j Q(θ, θ2j)]. (8)

Hereafter, we assume j = 1, 2. It is easily seen that for |δa| < 1, the mathematical expectations given by
Eq. (8) attain their maxima at points which coincide with the true values θ0j of the unknown appearance
and disappearance times.

Let us pass in Eqs. (5) and (6) from the variables θ1 and θ2 to new variables λj = (−1)j Q(θ, θj)
such that λj ∈ [λjmin, λjmax], λ1min = Q(θ1max, θ), λ1max = Q(θ1min, θ), λ2min = Q(θ, θ2min), and λ1max =
Q(θ, θ2max). Then for the random processes given by Eqs. (5) and (6), we can write

L∗
j(θj) = L∗

j [gj(λj)] = μ∗
j (λj) = (1 + δa)min(λj , λ0j)− (1 + δa)

2 λj/2 + νj(λj), (9)

where λ01 = Q(θ01, θ), λ02 = Q(θ, θ02), and νj(λj) are the statistically independent Gaussian random
processes with zero mathematical expectations and the correlation functions

B∗
j (λ1j , λ2j) = (1 + δa)

2 min(λ1j , λ2j), (10)

while gj(λj) are solutions of the equations (−1)j Q(θ, θj) = λj for θj. According to the properties of the
function in Eq. (7), the locations of the maxima of the random processes given by Eq. (9) are written as

λ∗
j = arg supμj(λj), (11)

and are related to the estimates of the appearance and disappearance times by one-to-one transformations.
Therefore, the conditional probability densities W ∗

θj(θj | θ0j) of the quasi-likelihood estimates of the appear-
ance and disappearance times can be expressed in terms of the probability densities W ∗

λj(λj | λ0j) of the
random quantities given by Eq. (11):

W ∗
θj(θj | θ0j) = W ∗

λj

[
(−1)j Q(θ, θj)

∣∣∣ (−1)j Q(θ, θ0j)
] ∣∣∣∣∂Q(θ, θj)

∂θj

∣∣∣∣ . (12)

By analogy with [5, 8], the probability densities W ∗
λj(λj | λ0j) are written as

W ∗
λj(λj | λ0j) =

+∞∫
−∞

∂

∂λj

[
∂F2j(u, v, λj)

∂u

∣∣∣∣
u=v

]
du, (13)

where

F2j(u, v, x) = P

[
supμ∗

j(λj)
λj min≤λj<x

< u, supμ∗
j(λj)

x≤λj≤λj max

< v

]
(14)

are the two-dimensional distribution functions of values of the absolute maxima of the random processes
μ∗
j(λj). According to Eqs. (9) and (10), μ∗

j (λj) are the statistically independent Gaussian Markov random
processes [9] with the drift and diffusion coefficients

k1j(γ0) =
1

2
×
{
1− δ2a, λjmin ≤ λj ≤ λ0j ;

−(1 + δa)
2, λ0j < λj ≤ λjmax,

k2j = (1 + δa)
2. (15)

Therefore, by analogy with [8], for the function of Eq. (14) we can write

F2j(u, v, x) =

v∫
−∞

Wj(y, λjmax) dy, (16)
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where Wj(y, λj) are the solutions of the Fokker–Planck–Kolmogorov (FPK) equation [9]

∂Wj(y, λj)

∂λj
+

∂

∂y
[k1jWj(y, λj)]− 1

2

∂2

∂y2
[k2jWj(y, λj)] = 0 (17)

with the drift and diffusion coefficients, which are given by Eq. (15), for the initial conditions

Wj(y, λj = λjmin) = exp
{−[y + λjminδa (1 + δa)]

2
/
[2 (1 + δa)

2 λjmin

]}/[
(1 + δa)

√
2πλjmin

]
and the boundary conditions Wj(y = u, λj) = Wj(y = −∞, λj) = 0 for λj ∈ [λjmin, x] and Wj(y = v, λj) =
Wj(y = −∞, λj) = 0 for λj ∈ [x, λjmax].

Using the reflection method with the sign reversal [9], we find the solution of Eq. (17) with coef-
ficients (15) individually for the cases λj ∈ [λjmin, λ0j ] and λj ∈ [λ0j , λjmax]. Substituting the obtained
solutions into Eq. (16) and then Eq. (16) into Eq. (13), by analogy with [5], we obtain the expressions for
the probability density of the random quantity given by Eq. (11):

W ∗
λj(λj | λ0j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1− δ2a)Ψ
[
(1− δ2a) (λ0j − λj), (1− δ2a) (λ0j − λjmin),

(1 + δa)
2 (λjmax − λ0j), (1 + δa)/(1 − δa)

]
, λj ≤ λ0j ;

(1 + δa)
2 Ψ
[
(1 + δa)

2 (λj − λ0j), (1 + δa)
2 (λjmax − λ0j),

(1− δ2a) (λ0j − λjmin), (1− δa)/(1 + δa)
]
, λj > λ0j ,

(18)

where

Ψ(y, y1, y2, y3) =

{
Φ

(√
y1 − y

4

)
+ exp

[
−y1 − y

8

]/√
π (y1 − y)

2

}
1

|y|3/2 √2π

×
∞∫
0

x exp

[
−(x+ y/2)2

2y

] [
Φ

(
y3x+ y2/2√

y2

)
− exp(−y3x)Φ

(−y3x+ y2/2√
y2

)]
dx. (19)

In this case, the probability density in Eq. (18) is independent of choosing the value of θ in Eqs. (5) and (6).
On the basis of Eqs. (12) and (18), we write the expressions for the conditional biases and variances of the
estimates of the appearance and disappearance times in Eq. (4):

B(θ∗j | θ0j) =
θj max∫

θj min

(θj − θ0j)W
∗
λj

[
(−1)j Q(θ, θj)

∣∣∣ (−1)jQ(θ, θ0j)
] ∣∣∣∣∂Q(θ, θj)

∂θj

∣∣∣∣ dθj, (20)

V (θ∗j | θ0j) =
θj max∫

θj min

(θj − θ0j)
2 W ∗

λj

[
(−1)j Q(θ, θj)

∣∣∣ (−1)j Q(θ, θ0j)
] ∣∣∣∣∂Q(θ, θj)

∂θj

∣∣∣∣ dθj. (21)

Assuming δa = 0 and y3 = 1 in Eqs. (18) and (19), respectively, we see that Eqs. (18), (20), and (21) are
transformed to exact formulas for the characteristics of the maximum-likelihood estimate of the appearance
and disappearance times for a signal with the a priori known amplitude, which were obtained in [5].

Asymptotic behavior of the probability densities (18), biases (20) and variances (21) with increasing
SNR is studied in [5] for δa = 0. Performing similar transformations for the normalized variables (or
generalized quasi-likelihood estimates of the appearance and disappearance times)

κj =

{
(1− δ2a) (λj − λ0j), λj ≤ λ0j ;

(1 + δa)
2 (λj − λ0j) λj > λ0j ,

(22)
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Fig. 1. Normalized bias of the estimates of the
appearance and disappearance times.

Fig. 2. Normalized variance of the estimates of the
appearance and disappearance times.

we obtain the limiting probability density with increasing SNR in the form

Wj(κj) =

{
W0[−κj, (1 + δa)/(1− δa)] , κj ≤ 0;

W0[κj , (1− δa)/(1 + δa)] , κj > 0,
(23)

W0(x, y) = Ψ(x,∞,∞, y) = (2y + 1) exp[y (y + 1) |x|]{1− Φ[(2y + 1)
√

|x|/4]}+Φ[
√
|x|/4]− 1.

It is known [6, 8] that with the increase in SNR λ0j , the quasi-liklelihood estimates converge in the
rms sense to the locations of the maxima of mathematical expectations of the decision statistics given by
Eqs. (5) and (6), which coincide with the true values θ0j of the appearance and disappearance times for
|δa| < 1. Let us expand (−1)j Q(θ, θj) into its Taylor series in terms of the variable θj in the vicinity of θ0j
and confine ourselves to the first-order terms in the expansion:

(−1)j Q(θ, θj) ≈ (−1)j Q(θj , θ0j) + (−1)j ρ2j (θj − θ0j)/Tmax,

where ρ2j = 2a20f
2(θ0j)Tmax/N0 and Tmax = θ2max − θ1min is the maximum possible signal duration. Hence,

we obtain
λj − λ0j ≈ (−1)j ρ2j (θj − θ0j)/Tmax. (24)

Substituting Eq. (24) into Eq. (22), we obtain

κj = (−1)j ×
{
(1− δ2a) ρ

2
j (θj − θ0j)/Tmax, θj ≤ θ0j;

(1 + δa)
2 ρ2j (θj − θ0j)/Tmax, θj > θ0j.

(25)

Using Eqs. (23) and (25), we find the asymptotic values of the bias and variance of the quasi-likelihood
estimates of the appearance and disappearance times as

Ba(θ
∗
j | θ0j) = − (−1)j 8Tmaxδa

ρ2j (δa − 1)2 (δa + 1)2
; (26)

Va(θ
∗
j | θ0j) = 2T 2

max (13 + 101δ2a + 15δ4a − δ6a)

ρ4j (δa − 1)4 (δa + 1)4
. (27)
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For δa = 0, the quantities given by Eqs. (26) and (27) coincide with the bias and variance of the maximum-
likelihood estimate of the appearance and disappearance times of a signal with the a priori known amplitude,
which were obtained in [4], namely,

B0j = 0, V0j = 26T 2
max/ρ

4
j . (28)

The influence of the a priori ignorance of the amplitude on the accuracy of the quasi-likelihood esti-
mates of the appearance and disappearance times can be characterized by the normalized bias b(δa) =

= Ba(θ
∗
j | θ0j)/

√
Va(θ∗j | θ0j) and the normalized variance v(δa) = Va(θ

∗
j | θ0j)/V0j . These quantities are the

same for the quasi-likelihood estimates of the appearance and disappearance times and can characterize a
loss in the accuracy of the quasi-likelihood estimates compared with the accuracy of the maximum-likelihood
estimates of the appearance and disappearance times for a signal with known amplitude. Figures 1 and 2
show the normalized bias b(δa) and the normalized variance v(δa), respectively, as functions of δa. It is seen
in Figs. 1 and 2 that the quasi-likelihood estimates of the appearance and disappearance times for the known
amplitude (δa = 0) have a zero bias, while their variance coincides with that of the maximum-likelihood
estimates. The presence of the amplitude detuning results in pronounced deterioration of estimation quality.
For example, for |δa| = 0.5, the variance of the quasi-likelihood estimate is 10 times greater than that of the
maximum-likelihood estimate in the case of an a priori known amplitude.

3. MAXIMUM-LIKELIHOOD ESTIMATION ALGORITHM

To improve the accuracy of estimating the appearance and disappearance times, one can use the
maximum-likelihood algorithm according to which the unknown amplitude in Eq. (2) should be replaced by
its estimate am, which is equivalent to minimization of the LRF logarithm in Eq. (2) with respect to the
amplitude:

L(θ1, θ2) = L(am, θ1, θ2) = max
a

L(a, θ1, θ2). (29)

The maximum-likelihood estimates of the appearance and disappearance times are determined as the
locations of the maximum of decision statistic (29):

(θm1, θm2) = arg supL(θ1, θ2). (30)

The LRF logarithm in Eq. (2) can analytically be maximized with respect to the amplitude. To this
end, the derivative of the function in Eq. (2) with respect to a is put equal to zero

dL(a, θ1, θ2)

da

∣∣∣∣
am

=
2

N0

θ2∫
θ1

ξ(t)f(t) dt− 2am
N0

θ2∫
θ1

f2(t) dt = 0.

Then we solve the obtained likelihood equation with respect to am:

am =

θ2∫
θ1

ξ(t)f(t) dt

/ θ2∫
θ1

f2(t) dt. (31)

Substituting the solution of Eq. (31) into Eq. (29), we obtain

L(θ1, θ2) =
1

N0

⎛
⎝ θ2∫

θ1

ξ(t)f(t) dt

⎞
⎠

2/ θ2∫
θ1

f2(t) dt. (32)

Equation (32) determines the structure of the receiver which can be realized only in the multichannel option.
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Fig. 3. Block diagram of one channel of a maximum-likelihood meter of the appearance and disappearance
times.

The following values of decision statistic (32) are formed for a discrete set of values of the appearance and
disappearance times: Lkj = L(θ1min + kΔθ1, θ2min + jΔθ2), where k = 1, 2, . . . , n1 and j = 1, 2, . . . , n2.
Then the meter should consist of n1n2 channels. A block diagram of one channel is shown in Fig. 3, where
the labels 1 denote integrators in the time interval [θ1min + kΔθ1, θ2min + jΔθ2]. The of the maximum-
likelihood estimates of the appearance and disappearance times are determined by the numbers of channels
with the maximum output signal.

It should be noted that in addition to the difficulties of realization of the maximum-likelihood algo-
rithm described by Eq. (30), which are due to its multichannel nature, one can face difficulties in determining
the characteristics of estimate by the absolute maximum of the LRF logarithm given by Eq. (32).

4. QUASI-OPTIMAL ESTIMATION ALGORITHM

To simplify the hardware and software realization of the maximum-likelihood meter and finding its
characteristics, one can use quasi-optimal estimates. In this case, we write the LRF logarithm in Eq. (2) as
a sum L(a, θ1, θ2) = L1(a, θ1) + L2(a, θ2) of the two terms

L1(a, θ1) =
2a

N0

θ∫
θ1

ξ(t)f(t) dt− a2

N0

θ∫
θ1

f2(t) dt; (33)

L2(a, θ2) =
2a

N0

θ2∫
θ

ξ(t)f(t) dt− a2

N0

θ2∫
θ

f2(t) dt, (34)

where θ is an arbitrary point which belongs to the interval (θ1max, θ2min). Denote Laj(θj) = max
a

Lj(a, θj)

and consider the estimates
θ∗mj = arg supLaj(θj). (35)

Although the quasi-optimal estimates of Eq. (35) are not the maximum-likelihood estimates, it is
shown below that with increasing SNR their efficiency asymptotically coincides with that of the maximum-
likelihood estimates of the appearance and disappearance times for a signal with the a priori known am-
plitude. By analogy with Eqs. (31) and (32), we maximize the functions given by Eqs. (33) and (34) with
respect to the variable a and obtain

La1(θ1) =
1

N0

⎛
⎝ θ∫

θ1

ξ(t)f(t) dt

⎞
⎠

2/ θ∫
θ1

f2(t) dt; (36)
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Fig. 4. Block diagram of the quasi-optimal meter of the appearance and disappearance times.

La2(θ2) =
1

N0

⎛
⎝ θ2∫

θ

ξ(t)f(t) dt

⎞
⎠

2/ θ2∫
θ

f2(t) dt. (37)

Figure 4 shows a block diagram of the device for forming quasi-optimal estimates (35) of the appearance
and disappearance times, which is developed on the basis of Eqs. (36) and (37). In Fig. 4, 1 and 1′ denote
integrators in the time intervals [θ, t], where t ∈ [θ, θ2max], and [θ1min, t], where t ∈ [θ1min, θ], respectively, 2
denotes the delay line for the time Δt = θ− θ1min, and 3 and 3′ stand for solvers that search for the signal-
maximum location in the time intervals [θ2min, θ2max] and [θ, θ + θ1max − θ1min], respectively. Therefore,
using the estimates given by Eq. (35) one can significantly simplify the technical realization of the receiver.
Indeed, to realize the maximum-likelihood estimation algorithm given by Eq. (29), we should develop a
multichannel receiver in terms of the appearance and disappearance times. For finding the estimates given
by Eq. (35), a two-channel circuit is sufficient.

Now let us analyze estimation algorithm (35). Consider the random processes

M1(θ1) =

θ∫
θ1

ξ(t)f(t) dt, M2(θ2) =

θ2∫
θ

ξ(t)f(t) dt, (38)

which are squared in Eqs. (36) and (37). They are the Gaussian random processes with the mathematical
expectations

S1(θ1) = 〈M1(θ1)〉 = a0q[max(θ01, θ1), θ], S2(θ2) = 〈M2(θ2)〉 = a0q[θ,min(θ02, θ2)]

and the correlation functions

B1(θ11, θ21) = 〈[M1(θ11)− S1(θ11)] [M1(θ21)− S1(θ21)]〉 = N0q[max(θ11, θ21), θ]/2,
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B2(θ12, θ22) = 〈[M2(θ12)− S2(θ12)] [M2(θ22)− S2(θ22)]〉 = N0q[θ,min(θ12, θ22)]/2,

where

q(θ1, θ2) =

θ2∫
θ1

f2(t) dt. (39)

Since the function f(t) can turn to zero only in a zero-measure part of the interval [θ1min, θ2max],
q(θ1, θ) is a monotonically decreasing function of the argument θ1, and q(θ, θ2) is a monotonically increasing
function of θ2, and the equalities q(x, θ) = −q(θ, x),

q[max(x, y), θ] = min[q(x, θ), q(y, θ)], q[θ,min(x, y)] = min[q(θ, x), q(θ, y)]

take place. Using the properties of function (39), one can rewrite the mathematical expectations and the
correlation functions of the processes given by Eq. (38) in the form

Sj(θj) = a0 min[(−1)j q(θ, θ0j), (−1)j q(θ, θj)],

Bj(θ1j , θ2j) = N0 min[(−1)j q(θ, θ1j), (−1)j q(θ, θ2j)]/2.

In Eq. (38), we replace the variables θ1 and θ2 by new variables rj = (−1)j q(θ, θj) such that rj ∈
[Rjmin, Rjmax], R1min = q(θ1max, θ), R1max = q(θ1min, θ), R2min = q(θ, θ2min), and R2max = q(θ, θ2max).
Then for the random processes in Eqs. (36) and (37), we can write

Laj(θj) = (−1)j M2
j (θj)/[N0q(θ, θj)] = Laj(rj) = χ2

j(rj)/(N0rj).

Here, χj(rj) are the statistically independent Gaussian random processes with the mathematical expec-
tations Sj(rj) = a0 min(rj , r0j), where r0j = (−1)j q(θ, θ0j) and the correlation functions Bj(r1j , r2j) =
N0 min(r1j , r2j)/2. Therefore, for decision statistics (36) and (37), the following expression holds true:

Laj(lj) = z20j [min(1, lj)]
2/(2lj) + z0j min(1, lj)ωj(lj)/lj + ω2

j (lj)/(2lj), (40)

where

lj = rj/r0j , lj ∈ [Ljmin, Ljmax], Ljmin = Rjmin/r0j , Ljmax = Rjmax/r0j ,

z20j = 2a20r0j/N0 = 2a20 (−1)j q(θ, θ0j)/N0,

and ωj(lj) are the statistically independent standard Wiener processes.

For large SNRs z0j , the last term in Eq. (40) can be ignored and approximately written as

Laj(lj) ≈ z20j [min(1, lj)]
2/(2lj) + z0j min(1, lj)ωj(lj)/lj . (41)

These functions are the Gaussian random processes with the mathematical expectations

Saj(lj) = z20j [min(1, lj)]
2/(2lj) (42)

and the correlation functions

Kj(l1j , l2j) = z20j min(l1j , 1)min(l2j , 1)min(l1j , l2j)/(l1j l2j). (43)

For large SNRs z0j , the maximum of the decision-statistic is located in the immediate vicinity of its
mathematical-expectation maximum [6]. The mathematical expectations given by Eq. (42) attain max-
imum values for lj = 1. Therefore, we study the behavior of random processes (41) in the immediate
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vicinities of the points lj = 1. To this end, expanding the functions in Eqs. (42) and (43) into the Taylor
series in terms of lj and (l1j , l2j) in the vicinity of unity, we obtain

Saj(lj) ≈ z20j (1− |lj − 1|)/2, (44)

Kj(l1j , l2j) ≈ z20j (1− |l1j − 1|/2 − |l2j − 1|/2 − |l1j − l2j |/2). (45)

For large SNRs, we approximate decision statistic (41) by the Gaussian random processes Yj(lj) with mathe-
matical expectations (44) and correlation functions (45) in the intervals of the possible values of the variables
lj . Locations of the maxima of the random processes Yj(lj), i.e.,

lmj = arg supYj(lj), (46)

are related to the estimates of the appearance and disappearance times by one-to-one transformations.
Therefore, the distribution functions of the estimates given by Eq. (35) can be obtained using the distribution
functions of the random quantities given by Eq. (46):

Fj(x) = {lmj < x} = P

[
sup
lj≤x

Yj(lj) > sup
lj>x

Yj(lj)

]
. (47)

Let us introduce the random processes

ηj(lj) = [Yj(lj)− Yj(x)] /z0j , x ∈ [Ljmin, Ljmax], (48)

which make it possible to rewrite Eq. (47) as

Fj(x) = P

[
sup
lj≤x

ηj(lj) > sup
lj>x

ηj(lj)

]
. (49)

By definition, the quantities ηj(lj) in Eq. (48) are the statistically independent Gaussian random
processes with the mathematical expectations

Sj(lj) = z0j(|x− 1| − |lj − 1|)/2

and the correlation functions

Kj(l1j , l2j) =

{
min(|l1j − x|, |l2j − x|), (l1j − x) (l2j − x) ≥ 0;

0, (l1j − x) (l2j − x) < 0.
(50)

According to Eq. (50), the realization segments of the random processes ηj(lj) in the intervals [Ljmin, x]
and (x,Ljmax] are statistically independent. Therefore, by analogy with [10], we can write the following
expression for the distribution given by Eqs. (47) and (49):

Fj(x) =

∞∫
0

P2j(u) dP1j(u), (51)

where

P1j(u) = P

[
sup
lj≤x

ηj(lj) < u

]
, P2j(v) = P

[
sup
lj>x

ηj(lj) < v

]
.

The random processes ηj(lj) are the statistically independent Gaussian Markov processes [9] with
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the drift and diffusion coefficients

k1j = z0j ×
{
1/2, Ljmin ≤ lj ≤ 1,

−1/2, 1 < lj ≤ Ljmax,
k2j = 1. (52)

Therefore, the functions P1j(u) are the probabilities of that the boundary u is not reached by the Markov
random processes ηj(lj) for Ljmin ≤ lj ≤ 1, while the functions P2j(v) are the probabilities that the boundary
v is not reached by the Markov random processes ηj(lj) for 1 < lj ≤ Ljmax.

By analogy with [9], we have

P1j(u) =

u∫
0

W1j(y, Ljmin) dy, P2j(v) =

v∫
0

W2j(y, Ljmax) dy, (53)

whereW2j(y, lj) are the solutions of the direct Fokker–Planck–Kolmogorov equation (17) with the coefficients
given by Eq. (52) for the boundary conditionsW2j(y = −∞, lj) = W2j(y = u, lj) = 0 and the initial condition
W2j(y, lj = x) = δ(y − u), while W1j(y, lj) are the solutions of the inverse Fokker–Planck–Kolmogorov
equation

∂W1j(y, lj)

∂lj
+ k1j

∂

∂y
[W1j(y, lj)] +

k2j
2

∂2

∂y2
[W1j(y, lj)] = 0 (54)

with the coefficients given by Eq. (52) for the boundary conditions W1j(y = −∞, lj) = W1j(y = v, lj) = 0
and the initial condition W1j(y, lj = x) = δ(y − v). Solving Eqs. (17) and (54) by the reflection method
with the sign reversal [9], substituting the obtained solutions into Eq. (53), and then substituting Eq. (53)
into Eq. (51), we find the distribution function of the random quantity in Eq. (46):

Fj(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
P

[
z20j
4

(x− Ljmin),
z20j
4

(1− x),
z20j
4

(Ljmax − 1)

]
, Ljmin ≤ x ≤ 1;

1− P

[
z20j
4

(Ljmax − 1),
z20j
4

(x− 1),
z20j
4

(x− Ljmin)

]
, 1 < x ≤ Ljmax.

(55)

Here, we denote

P (x1, x2, x3) =
1

2
√
2πx2

∞∫
0

∞∫
0

{
exp

[
−(ξ − u)2

8x2

]
− exp

[
−(ξ + u)2

8x2

]}

×
{
exp(−u)Φ

(
2x1 − u

2
√
x1

)
+

1√
2πx1

exp

[
−(2x1 + u)2

8x1

]}
exp

[
−ξ − u

2
− x2

2

]

×
{
Φ

(√
x3 +

ξ

2
√
x3

)
− exp(−ξ)Φ

(√
x3 − ξ

2
√
x3

)}
dξ du.

Let us consider the asymptotic behavior of the distribution function in Eq. (55) with increasing SNR.
Assuming that the true values of the appearance and disappearance times are the internal points of their a
priori intervals and letting z0j → ∞, we find the limiting expression for the distribution function given by
Eq. (55):

F0j(x) =

⎧⎨
⎩
P0

[
z20j (1− x)/4

]
, Ljmin ≤ x ≤ 1,

1− P0

[
z20j (x− 1)/4

]
, 1 < x ≤ Ljmax.

where
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P0(x) = P (+∞, x,+∞) =

∞∫
0

exp(−u)

[
Φ

(
u− 2x

2
√
x

)
− exp(u)Φ

(
−u+ 2x

2
√
x

)

− exp(−u+ 4x)Φ

(
u− 6x

2
√
x

)
+ exp(2u+ 4x)Φ

(
−u+ 6x

2
√
x

)]
du.

We also find the limiting probability density of the random quantities given by Eq. (46)

W0j(x) =
3z20j
2

exp
[
z20j |x− 1|] {1− Φ

(
3z0j
2

√
|x− 1|

)}
− z20j

2

{
1− Φ

(z0j
2

√
|x− 1|

)}
. (56)

Let us expand the expression (−1)j q(θ, θj) into a Taylor series in terms of the variable θj in the vicinity of
θ0j and confine ourselves to the first-order terms in the series:

(−1)j q(θ, θj) ≈ (−1)j q(θ, θ0j) + (−1)j
ρ2jN0

2a20Tmax
(θj − θ0j),

where ρ2j = 2f2(θ0j)a
2
0Tmax/N0. Hence, we obtain

lmj − 1 ≈ (−1)j
ρ2j

Tmaxz
2
0j

(θj − θ0j). (57)

Using Eqs. (57) and (56), we find asymptotic values of the bias and variance of the quasi-optimal appearance
and disappearance times given by Eq. (35):

Ba(θ
∗
mj | θ0j) = 0, Va(θ

∗
mj | θ0j) =

26T 2
max

ρ4j
, (58)

which coincide with those in Eq. (28). It is evident from Eq. (58) that with increasing SNR the accuracy
of the quasi-optimal appearance and disappearance times in Eq. (35) asymptotically coincides with that of
the maximum-likelihood estimates of the appearance and disappearance times for a signal with the a priori
known amplitude. Therefore, the estimates of Eq. (35) are asymptotically maximum-likely. Using them,
we can significantly simplify technical realization of the maximum likelihood meter of the appearance and
disappearance times given by Eq. (30).

Therefore, the asymptotic values of the variances of the maximum-likelihood estimates of the appear-
ance and disappearance times for a signal with the a priori known amplitude, which are given by Eq. (28),
and the asymptotic value of the variances of the quasi-optimal estimates, which are given in Eq. (58), coin-
cide. Hence it follows that the asymptotic values of the variances of maximum-likelihood estimates (30) of
the appearance and disappearance times for a signal with the a priori unknown amplitude are also deter-
mined by Eqs. (28) and (58). Indeed, the variance of estimates (30) of the appearance and disappearance
times for a signal with the a priori unknown amplitude cannot be smaller than the variance in Eq. (28) for
the maximum-likelihood estimates of the appearance and disappearance times for a signal with the a priori
known amplitude. At the same time, the variance of the maximum-likelihood estimates given by Eq. (30)
cannot be greater than the variance in Eq. (58) for the quasi-optimal estimates.

Therefore, the dependences shown in Figs. 1 and 2 characterize an accuracy gain for the maximum-
likelihood estimates given by Eq. (30) or the quasi-optimal estimates given by Eq. (35) compared with
the quasi-likelihood estimates given by Eq. (4). Therefore, for |δa| ≥ 1/2, the variance of the maximum-
likelihood and quasi-optimal estimates, which are given by Eqs. (30) and (35), respectively, is smaller by
more than an order of magnitude than that of the quasi-likelihood estimates given by Eq. (4).

425



5. COMPUTER STATISTICAL SIMULATION

To check the efficiency of the synthesized estimation algorithms and establish the applicability limits
of the asymptotic expressions for their effectiveness characteristics, the computer-aided statistical simulation
of the estimates given by Eqs. (30) and (35) was performed using a tapered rectangular pulse as an example
[11]. The signal shape is described by the function

f(t) = (1 + bt/Tmax) (1 + b+ b2/3)−1/2, (59)

where the quantity b characterizes the pulse-top tilt. The factor (1+ b+ b2/3)−1/2 is introduced to Eq. (59)
to ensure that the energy of the maximum-duration signal independent of the pulse-top tilt. This allows one
to compare the efficiency of estimating the appearance and disappearance times for signals with different
top tilts but the same energy.

The a priori regions of possible values of the appearance and disappearance times are chosen such
that θ1min = 0 and θ2max = Tmax are fixed and the maximum signal duration Tmax remains intact. We
choose θ = Tmax/2 as the center of the interval [0, Tmax]. Assume that the points θ1max and θ2min are
located symmetrically with respect to θ and their locations can vary only in accordance with the variation
in k = Tmax/Tmin, where Tmin = θ2min − θ1max is the minimum signal duration. Assume that the true
values of the appearance and disappearance times are located at the center of their a priori intervals
θ01 = Tmax (k − 1)/(4k) and θ02 = Tmax (3k + 1)/(4k), respectively.

The maximum-likelihood and quasi-optimal estimates were simulated. During simulation of the
maximum-likelihood estimates given by Eq. (30), the discrete readouts of decision statistic (32) were formed:

Lij =

{
zS(max[ξ1i, ξ01],min[ξ2j , ξ02]) +

j∑
n=i

[xn
√
Δξ(1 + bnΔξ)]

/√
1 + b+ b2/3

}2

2S(ξ1i, ξ2j)
, (60)

S(x, y) =
[
y − x+ b (y2 − x2) + b2 (y3 − x3)/3

] /
(1 + b+ b2/3) ,

where Δξ = 10−5 is the discretization step of the normalized time ξ = t/Tmax, xn are the statistically
independent Gaussian random quantities with zero mathematical expectations and unit variances, ξ1i =
θ1i/Tmax = iΔξ and ξ2j = θ2j/Tmax = jΔξ are the discretization nodes of the appearance and disappearance
times, respectively, i = 0, 1, . . . , ent[(k−1)/(2kΔξ)], j = ent[(k+1)/(2kΔξ)], . . . , N−1, N , N = ent(1/Δξ),
ent(x) is the integer part of the number x, ξ01 = θ01/Tmax, ξ02 = θ02/Tmax, and z2 = 2Tmaxa

2
0/N0 is the SNR

at the output of the maximum-likelihood receiver for a rectangular pulse. On the basis of the readouts given
by Eq. (60) the maximum-likelihood estimates θm1 = TmaxΔξ im and θm2 = TmaxΔξ jm of the appearance
and disappearance times, respectively, were formed, where im and jm are the numbers of the maximum
readout of the decision statistic.

In the simulation of quasi-optimal estimates (35), the following discrete readouts of the random
processes, given by Eqs. (33) and (34), were formed:

L1i =

{
zS(max[ξ1i, ξ01], 1/2) +

N/2∑
n=i

[xn
√
Δξ (1 + bnΔξ)]

/√
1 + b+ b2/3

}2

2S(1/2, ξ1i)
, (61)

L2j =

{
zS(1/2,min[ξ2i, ξ02]) +

j∑
n=N/2

[xn
√
Δξ (1 + bnΔξ)]

/√
1 + b+ b2/3

}2

2S(ξ2i, 1/2)
. (62)

426



On the basis of the readouts in Eqs. (61) and (62), the following quasi-optimal estimates of the appearance
and disappearance times were developed: θ∗m1 = TmaxΔξ i∗m and θ∗m2 = Tmax Δξ j∗m, where i∗m and j∗m are
the numbers of the maximum readouts given by Eqs. (61) and (62), respectively.

During the simulation, 105 test cycles were real-

Fig. 5. Variances of the disappearance-time esti-
mates.

ized for each z. Therefore, boundaries of the confidence
intervals deviate from the experimental values of vari-
ances by no more than 15% with a probability of 0.9 for
V (θi | θ0i)/T 2

max > 10−3.

Figure 5 shows the variance (normalized to T 2
max)

the disappearance-time estimates for signal (59) as a func-
tion of the SNR z for b = 0 and k = 10. The solid
curve shows the asymptotic dependence calculated by
Eqs. (28) and (58), the circles show the experimental val-
ues of the variance of the maximum-likelihood estimate
given by Eq. (30), and the squares denote experimental
values of the variance of the quasi-optimal estimate given
by Eq. (35), which were obtained during the simulation.
As is evident from Fig. 5, the scattering of the maximum-
likelihood estimate is somewhat smaller than that of the
quasi-optimal estimate if SNRs are not too large. The
difference between them decreases with increasing SNR, and the variances of the maximum-likelihood and
quasi-optimal estimates coincides with their asymptotic value.

6. CONCLUSIONS

We have synthesized the quasi-likelihood, maximum-likelihood, and quasi-optimal algorithms for es-
timating the appearance and disappearance times of an arbitrary-shaped signal with unknown amplitude.
The asymptotic characteristics of the operation quality of the synthesized algorithms were found. Although
the maximum-likelihood algorithm has the best estimation accuracy compared with other considered algo-
rithms, its hardware or software realization is most complicated. The accuracy of a simpler quasi-optimal
estimation algorithm asymptotically coincides with that of the maximum-likelihood algorithm. It was shown
that the absence of a priori information on the signal amplitude for large SNRs does not asymptotically
influence the accuracy of the maximum-likelihood and quasi-optimal estimates of the signal appearance and
disappearance times. The obtained results allow us to reasonably choose the estimation algorithm depend-
ing on the available a priori information on the signal amplitude and the requirements to the algorithm
estimation accuracy and realization simplicity.
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