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The possibilities of applying supershort (subnanosecond) pulses and their sequences in radiolocation

were discussed in [1–6] and some others. Short-pulsed signals and their sequences represent a special case of

ultrawideband signals (UWBS). The use of the latter has its specific character and makes it possible to

enhance the capabilities of radiolocation. The characteristics of range and velocity estimates under exposure

to interferences in the form of Gaussian white noise (GWN) were found in [4]. However, in addition to

GWN, the deliberate interferences are also frequently present in real-life environment. Such interferences

can be interpreted as a Gaussian narrowband random process [5]. The characteristics of reliable estimates of

range and velocity under exposure to the Gaussian narrowband interference (GNI) were found in paper [6].

However, the expressions for the characteristics of range and velocity estimates obtained in paper [6] can be

used only under the conditions of high a posteriori accuracy, when anomalous errors are not present and the

impact of threshold effects is negligibly small [7, 8]. In this connection, the present paper considered the

threshold properties of range and velocity estimates under exposure to both GWN and GNI.

Similar to paper [4] the probing UWBS sequence can be written in the form:
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where function s0(�) describes the waveform of one pulse,� is the repetition cycle, � is the temporal position

of the sequence. Parameter � determines the point of sequence (1) that is related to its temporal position.

Hence, at � = 0 the value of � represents the temporal position of the first pulse of the sequence, at

� � �( ) /N 1 2 quantity � gives the temporal position of the middle of the sequence, while at � � �N 1

quantity � represents the temporal position of the last pulse in the sequence.

Let us assume that probing sequence (1) is found at distance R0 and moves with radial velocityV0. The

unknown range R0 and velocity V0 of target assume values from a priori domain W R R�{[ ; ]min max ,

[ / ; / ]}max max�V V2 2 so that
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where c is the speed of light. Then, the signal received can be written in the form [4]:

s t R V( , , )0 0 � � � � �

�

�

�
s t R c k V c

k

N

[ / ( ) ( / )]2 1 20 0

0

1

� � . (3)

Function s( )� describes the waveform of one received UWBS signal and, in the general case, differs from

s0( )� in sequence (1) [4].

The following realization is observed on time interval [ ; ]0 T under exposure to both GWN and GNI:

x t s t R V n t y t( ) ( , , ) ( ) ( )� � �0 0 , (4)

where n t( ) is the centered GWN with one-sided spectral density N 0, y t( ) is the centered GNI having

correlation function K y t y ty( ) ( ) ( )� �� 
 � �. Processes n t( ) and y t( ) are assumed to be statistically

independent.

Let us initially assume that the GNI correlation function is a priori unknown. Then for the estimation of

range and velocity it is proposed to use the maximum likelihood algorithm synthesized on condition that

GNI is not present. Let the pulse ratio of sequence (3) is sufficiently large so that separate pulses do not

overlap and the observation interval [ ; ]0 T is longer than the duration of the entire sequence, i.e., T N� �.

Then, provided only GWN is present, the logarithm of the likelihood ratio functional, omitting the

non-essential term, can be written in the form [4, 6, 7]:
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The realization of the observed data x t( ) (4), besides GWN n t( ), contains GNI y t( ). Therefore, estimates

( � , � ) ( , )R V L R V1 1 1�argsup , ( , )R V W	 (6)

are not maximum likelihood estimates (MLE). These estimates can be called quasi-likelihood estimates

(QLE) [9], because they coincide with MLE estimates at y t( ) �0, i.e. in the absence of GNI.

In order to determine the characteristics of QLE (6), we shall present expression (5) in the form of a sum

of signal and noise functions [7, 8]:

L R V S R R V V N R V1 1 0 0 1( , ) ( , , , ) ( , )� � ,

where signal function has the form:
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while noise function N R V L R V L R V1 1 1( , ) ( , ) ( , )� � 
 � is the realization of the Gaussian random field. The

first two moments of the noise function have the form:


 � �N R V1 0( , ) ,

K R R V V N R V N R V1 1 2 1 2 1 1 1 1 2 2( , , , ) ( , ) ( , )� 
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Since it is assumed that T N� � so that the entire received sequence (3) is located inside the observation

interval, the integration limits in expressions (7) and (8) can be replaced with infinite ones. As a result we

obtain
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where S
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d is the signal function (uncertainty function) [7, 8] for a single UWBS

of sequence (3), while
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Let us designate the duration of one pulse of sequence (3) as � s and GNI correlation time as � y, so that

S f s( ) !� 0and K y y( ) !� 0. We shall restrict ourselves with the analysis of central peaks of the signal (9)

correlation (10) functions assuming that, in addition to (2), the following condition is satisfied:

" " " "� �max , /R R R R c� � #0 1 2 2� . (11)

Let the pulse ratio of received UWBS sequence (3) be sufficiently large so that

� � � �s y

 

, . (12)

Then, provided conditions (2), (11), and (12) are satisfied, functions (9) and (10) assume the form [2, 6]:
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From the last expression it follows, in particular, that the noise function is a realization of Gaussian

uniform field.

It is obvious [7] that signal function (13) reaches its maximum at R R� 0 and V V� 0. Therefore, the

signal-to-noise ratio (SNR) [7] can be written in the form:

z S R R V V K R R V V1

2

1

2

0 0 0 0 1 0 0 0 0� ( , , , ) / ( , , , ). (15)
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Substituting the values of functions (13) and (14) into (15) we obtain:

z z Nz1

2 2

1 0

2

1� �/ /$ $ , (16)

where z Nz
2

0

2
� is the SNR at the output of the maximum likelihood receiver in the absence of GNI,

z E N0

2

02� / is the SNR of one UWBS in the absence of GNI, while E s t t�

��

�

�

2
( )d is the energy of one

UWBS of sequence (3). Quantity$ 1 in formula (16) shows how many times SNR is reduced due to the GNI

action; this quantity is determined by the following expression:
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Let us designate the duration (length) of signal function (13) in terms of corresponding arguments as %R1

and %V1. Then

S R R R V V1 0 1 0 0 0 0( , , , ) !% ,

S R R V V V1 0 0 0 1 0 0( , , , ) !%

and obviously

S R R R V V V1 0 1 0 0 1 0 0( , , , )  !% % .

Let us single out in the domainW (2) of possible values of the range and velocity the signal subdomain

� ��W R R R RS � � �0 1 0 1% %; ,

� ��V V V V0 1 0 1� �% %; , (17)

where signal function (13) is other than zero. If

( � , � )R V WS1 1 	 , (18)

QLE estimates (6) are reliable [7, 8].

For the case of reliable QLE (6) their dispersions were found in paper [6]:
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where
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D0(R) and D0(V) are the dispersions of the range and velocity MLE, respectively, in the absence of GNI [4],
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shows the loss in accuracy of reliable QLE (6) due to the effect of GNI.

If condition (18) is not satisfied, anomalous errors may appear [7, 8] that results in abrupt (threshold)

deterioration of the QLE (6) accuracy. Correspondingly, the QLE dispersion becomes much larger than the

value obtained from relationship (19). The threshold properties of QLE can be characterized by the

probability of reliable estimate [7]:

P P R V WS01 1 1� 	[( � , � ) ]. (22)

LetWN be the complement of domainWS (17) to domainW (2) so thatW W WS N� - . Let us introduce

the following designations: H L R VS1 1� sup ( , ), ( , )R V WS	 and H L R VN1 1� sup ( , ), ( , )R V WN	 . Since

QLE (6) is determined by the position of absolute (highest) maximum of random field (5), expression (22)

can be rewritten in the form:

� �P P H HN S01 1 1� 
 . (23)

If a priori interval of possible values of the range and velocity (2) is not too small so that

%R R R1

 �max min , %V V1

 max, (24)

then random quantities H S1 and H N1 are roughly statistically-independent [7, 8]. This allows us to present

expression (23) in the form:

P F x F xN S01 1 1�

�
( ) ( )d , (25)

where F xN1 ( ) and F xS1 ( ) are the distribution functions of random quantities H S1 and H N1 , respectively.

Using the results [2, 10] of approximation of the specified distribution functions F xN1 ( ) and F xS1 ( ), we

can present them as follows:
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where9( ) exp( / ) /x t t
x
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2
2 2d 0 is the probability integral,
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2 2 3
2 1 3� � �( ) /max min maxR R V d N c

is the reduced area [10] of a priori domainW of possible values of the range and velocity in the presence of

only GWN [4], d F E0

2

0� / .

Substituting approximations (26) and (27) into expression (25) we can find an approximate expression

for the probability of reliable QLE (6):
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The accuracy of this expression enhances with the rise of SNR and increase of the reduced area of a priori

domain of the range and velocity possible values.

Let unknown range R0 and unknown velocityV0 be distributed uniformly in the a priori domain W (2) of

their possible values. Then, in a similar way [8], for unconditional spreading of QLE (6) with due regard for

the threshold effects, we obtain the following expressions:
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The comparison of expressions (29) and (30) with (19) makes it possible to determine contribution into

the estimate error mean square introduced by the threshold effects under exposure to GNI. Assuming that

& $1 1 1� � in expressions (28)–(30) we obtain the characteristics of the range and velocity MLE in the

absence of GNI [4]. In particular, comparing expressions (29) and (30) with the results of paper [4] it is

possible to determine the effect of GNI presence on the accuracy of range and velocity estimates.

Formula (28) for the probability of reliable QLE estimate is fairly cumbersome and the calculations based

on this formula are possible only in case of using the numerical methods. That is why, similar to [8], we shall

find a relatively simple analytical expression for the probability of anomalous errors P Pa1 011� � ; this

expression is valid at sufficiently large SNR (16):
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This formula provides a satisfactory accuracy at Pa1
 0.05…0.1. Assuming that & $1 1 1� � in expression

(31) we obtain the anomalous error probability
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for the range and velocity MLE in the absence of GNI. Comparing expression (31) and (32) we find:
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Quantity (33) shows how many times the anomalous error probability is increased due to the GNI action.

The highest accuracy of range and velocity estimates can be ensured, if GNI correlation function K y( )� is

known a priori. In this case the logarithm of likelihood ratio functional, omitting an inessential term, can be

written as follows [7]:
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where function v t( ) is determined by solving integral equation
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Hence, MLE ( � , � )R V2 2 of range R0 and velocity V0 has the form

( � , � ) ( , )R V L R V2 2 2�argsup , ( , )R V W	 . (35)

In order to determine the characteristics of MLE (27), we shall present expression (34) in the form of a

sum of signal and noise functions [7]:

L R V S R R V V N R V2 2 0 0 2( , ) ( , , , ) ( , )� � .

In this case, provided conditions (2), (11), and (12) are satisfied, signal function [6] has the form:
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while the correlation function of centered noise function can be presented as follows:

K R R V V N R V N R V2 1 2 1 2 2 1 1 2 2 2( , , , ) ( , ) ( , )� 
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For algorithm of expressions (34) and (35) SNR can be written in the form:
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where z
2

is the SNR at the output of maximum likelihood receiver in the absence of GNI, while z0

2
is the

SNR of one UWBS signal in the absence of GNI. The value of$ 2 in expression (36) shows how many times

the signal-to-noise ratio is reduced due to the exposure to GNI with a priori known correlation function;$ 2

is determined by the following expression:
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Similar to expression (28), MLE estimates (35) are reliable [7, 8], if

( � , � )R V WS2 2 	 . (37)
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For the case of reliable MLE (37) the dispersions of such estimates were found in paper [6]:
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where D R0( ) (20) and D V0( ) (21) are the dispersions of reliable MLE estimates of range and velocity in the

presence of GWN only, while the value of
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shows the loss in accuracy of reliable MLE estimates (35) due to the effect of GNI with a priori known

correlation function.

For MLE estimate (35), similar to expression (22), the probability of reliable estimate can be determined

as follows:
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Provided the conditions similar to (24) are satisfied, for relationship (39) we obtain an expression similar

to (25):
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where F xN2 ( ) is the distribution function of random quantity H L R VN2 2� sup ( , ), ( , )R V WN	 , while

F xS2 ( ) is the distribution function of random quantity H L R VS2 2� sup ( , ), ( , )R V WS	 . The

approximations of distribution functions F xN2 ( ) and F xS2 ( ) can be obtained similar to expressions (27) and

(28) in the form [10]:
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Substituting approximations (41) and (42) into (40) we can find an approximate expression for the

probability of reliable MLE estimate (35) in the presence of GNI with a priori known correlation function
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The accuracy of this approximate expression improves with the rise of SNR and increase of the reduced

area of a priori domain of possible values of the range and velocity.

If the unknown values of R0 and velocityV0 are random and distributed uniformly in the a priori domain

W (2), the unconditional spreading of QLE estimates (35) with due regard for anomalous errors have the

form:
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Comparing expressions (44) and (45) with (38) we can determine the contribution into the estimate error

mean square introduced by the threshold effects under exposure to GNI with a priori known correlation

function. Assuming that & $2 2 1� � in expressions (43)–(45) we obtain the characteristics of the range and

velocity MLE in the absence of GNI [4]. In particular, comparing expressions (44) and (45) with the results

in paper [4] it is possible to determine the effect of GNI with a priori known correlation function on the

accuracy of MLE estimates of the range and velocity.

Finally, the comparison of expressions (29) and (30) with expressions (44) and (45) makes it possible to

determine the impact of the a priori information about the GNI characteristics on the accuracy of range and

velocity estimates.

Formula (43) for the probability of reliable QLE estimate (35) is fairly cumbersome and the calculations

based on this formula are possible only by using the numerical methods. That is why, similar to expression

(31), we shall find a relatively simple analytical expression for the probability of anomalous errors

P Pa2 021� � . This expression is valid at sufficiently large values of SNR (36):
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Let us compare the probabilities of anomalous errors of MLE estimates in the absence of GNI (32) and in

the presence of GNI with a priori known correlation function (46). Comparing expression (32) and (46) we

find:
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The value of :2 (47) shows how many times the probability of the anomalous error of the range and

velocity MLE is increased due to the effect of GNI with a priori known correlation function.

Next, let us compare the probability of anomalous error (31) of MLE estimate (6) under exposure to GNI

with a priori unknown correlation function and the probability of anomalous error (46) of MLE estimate (35)

under exposure to GNI with a priori known correlation function. Comparing expressions (31) and (46) we

find:
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Quantity : (48) shows how many times the probability of the anomalous error of the range and velocity

estimates is reduced due to the presence of a priori information about the GNI characteristics and the use of

estimate algorithm (35) instead of algorithm (6).

The analysis of results obtained indicates that the presence of narrowband interference leads to an

exponential relative rise of the anomalous error probability with an increase of the number of pulses in the

probing sequence. The found characteristics of estimates allow us, with due regard for the threshold effects,

to make a sound selection of the estimate algorithm for location systems depending on the available a priori

information about a narrowband interference and also on the requirements specifying the realization

simplicity of the algorithm and on the requirements to the accuracy of estimates.
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