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Abstract—Characteristics of quasi-likelihood estimates of the target range, velocity, and acceleration

have been obtained during the probing with a sequence of optical pulses. The losses in accuracy of

quasi-likelihood estimates as compared with the accuracy of maximum likelihood estimates were also

found.
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The optical detection-and-ranging systems [1–4] make a wide use of sequences of optical pulses.

Potential accuracy of the range, velocity and acceleration estimates was investigated in paper [3]. In this case

it was assumed that the intensity waveform of the pulse sequence scattered by target is a priori known.

However, target fluctuations in real conditions and also physical effects accompanying the light scattering

and propagation result in distortion of the signal intensity waveform. Since in practice the signal intensity

waveform is often known inexactly, it is important to know the effect of incomplete knowledge of the signal

waveform on the estimate characteristics.

The present paper investigates the estimation of range, velocity and acceleration, when the intensity

waveform of the signal scattered by target is known inexactly. To this end, we used the method of

quasi-likelihood estimation [4, 5].

The concept of the method of quasi-likelihood estimation relies on the fact that the estimation algorithm

synthesis is based on certain anticipated (expected) signal s t l1( , )

�

rather than received signal s t l( , )

�

. Here
�

l R V A� ( , , ) is the vector of estimated parameters: range R, velocity V and acceleration A. Quasi-likelihood

estimate is used when the signal waveform is known inexactly. In addition, this estimate can be used as an

alternative to the maximum likelihood estimate of a signal with unknown inconclusive parameters. The

quasi-likelihood algorithm makes it possible to significantly simplify the technical implementation of the

receiver, namely, to eliminate the elements responsible for the receiver “tuning” to the unknown

inconclusive parameters. It entails possible losses in accuracy of estimates of inconclusive parameters.

Let us assume that a sequence of optical pulses is radiated with the following intensity:

s t s t kN

k

N

( ) �( ( ) ),� � � �

�

�

�

0

1

� � � (1)

where �( )s t is the function describing the intensity of individual optical pulse, � is the pulse period, � is the

time position of sequence. Parameter � determines the point of sequence related to its time position �.

Hence, at � = 0 quantity � represents the time position of the first pulse, at � = (N – 1)/2 it represents the time

position of the middle of sequence (1), while at � = (N – 1)—the time position of the last pulse.
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We shall assume that the signal received (subjected to processing) is the result of scattering of a sequence

of optical pulses (1) by an object located at range R0 and moving with velocity V0 and acceleration A0. Let us

use the description of physical processes in photodetector presented in papers [1, 2]. Then the intensity of

signal received has the form [1, 3]:

s t l s t R V A( , ) ( , , , )

�

0 0 0 0� � � � � �

�

�

�

k

N

s t R c k V c

0

1

0 02 1 2( / ( )( / )� � � �A k c0

2 2
( ) / )� � , (2)

where function s t( ) describes the intensity waveform of one scattered optical pulse of the sequence, and in

the general case it is different from �( )s t in expression (1); c is the velocity of light, | |V c0 		 and N A c�| |0 		 .

The true values of unknown parameters R, V, and A of the received sequence of optical pulses are marked

with zero subscript.

Let us assume that the signal with intensity (2) is observed on the time interval [0; T] against the

background of optical noise representing a stationary Poisson process with intensity 
�0. Physical

mechanisms of generation of optical noise and the techniques of its description are presented, e.g., in paper

[6]. Thus signal�( )t accessible for processing represents a Poisson process with intensity
 
( , ) ( , )t l s t l

� �

� � ,

where the value of vector parameter

�

l R V A� ( , , ) is subject to estimation, while quantity 
 is possibly

unknown. In case of using the receiver with direct photodetection, the process�( )t is equal to the number of

photoelectrons at the photodetector output during time [0; t]. Correspondingly, the intensity of this process


( , )t l

�

represents the average number of photoelectrons per unit of time, so that 
( , )t l t

�

d is the average

number of photoelectrons on time interval [ ; ]t t t�d [1, 2].

The synthesis of the receiver is performed for the anticipated signal having intensity


 
1 1 1( , ) ( , )t l s t l

� �

� � , where 
1 is the anticipated intensity of optimal noise.

If the waveform of received signal s t l( , )

�

and noise intensity 
had been known a priori, the estimation of

vector

�

l would have been possible by using the maximum likelihood method [7]. To this end, it is necessary

to use the position of the largest maximum of the logarithm of likelihood ratio functional [3]:

� �
L l s t l t s t l tF

T T

( ) ln ( , ) / ( ) ( , )

� � �

� � �

� �
1

0 0


 �d d . (3)

If the signal waveform is known inexactly, the expected signal s t l1( , )

�

and expected noise intensity 
1 are

used as reference signal s t l( , )

�

and noise intensity 
, respectively. Thus, we obtain the following expression

for decision making statistic:

� �
L l s t l t s t l t

T T

( ) ln ( , ) / ( ) ( , )

� � �

� � �

� �
1 1 1

0

1

0


 �d d . (4)

The value of vector

�

l corresponding to the largest maximum of decision making statistic (4) is taken as

estimate

�

lm . The obtained estimate shall be called quasi-likelihood estimate. Indeed, in case the received and

expected signals (s t l( , )

�

and s t l1( , )

�

) coincide and the true and expected intensities of optical noise (
and 
1)

also coincide, the decision making statistic (4) coincides with the logarithm of likelihood ratio functional (3).

Hence, the quasi-likelihood estimate transforms into the maximum likelihood estimate.

In order to find characteristics of the quasi-likelihood estimate, we shall present the decision making

statistic (4) in the form of signal and noise functions [7]:

L l S l l N l C( ) ( , ) ( )� � �0 . (5)

The signal function in expression (5) can be determined from relationship
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S l l L l C( , ) ( )

� � �

0 0� � � � ,

where symbol ��� designates the conditional mathematical expectation on the assumption that received

signal�( )t corresponds to value

�

l0 of parameter

�

l of signal intensity
 
( , ) ( , )t l s t l

� �

� � , while quantity C can

be determined from expression

� �
C s t l t s t l t

T T

� � � �

� �1 1d d( , ) ln ( , ) /

� �

0

1

0

1
 
 .

Since parameters

�

l R V A� ( , , ) are nonpower, quantity C does not depend on estimated parameters

�

l .

Thus, for the signal function we have the following expression

� �
S l l s t l s t l t

T

( , ) ( , ) ln ( , ) /

� � � �

0 0

0

1� �

� 1 1 d
 . (6)

Noise function N l( )

�

is determined by expression

N l L l L l L l S l l C( ) ( ) ( ) ( ) ( , )

� � � � �

� � � � � � �0 .

Hence, from expressions (5) and (6) we obtain the following relationship for noise function:

� �
N l s t l t s t l t

T

( ) ln ( , ) / ( ( ) ( , ) )

� � �

� � � � �

�
1 0

0

1 1 d
 � 
 . (7)

It should be noted that the mathematical expectation of the noise function is equal to zero, while its

correlation function has the form:

B l l N l N lN ( , ) ( ) ( )

� � � �

1 2 1 2� � � � � �

�
[ ( , ) ]ln[ ( , ) / ]s t l s t l

T
� �

0 1

0

1
 
1 1 ln[ ( , ) / ]1 2� s t l t1 1 d

�


 . (8)

Let signal function �( , )S l l

� �

0 (6) at fixed

�

l0 reach its highest value at point

�

l* and have only one strongly

pronounced maximum. Then the signal-to-noise ratio at the output of quasi-likelihood receiver can be

written as follows [7]:

z S l l B l lN

2 2

0� ( , ) / ( , )* * *

� � � �

. (9)

Henceforth we assume that the signal-to-noise ratio is sufficiently large, so that quasi-likelihood estimate

possesses a high a posteriori accuracy [7]. In addition, let the received (s t l( , )

�

and expected s t l1( , )

�

) signals

be differentiable with respect to all estimated parameters. Then quasi-likelihood estimate

�

lm can be found

from the solution of the system of equations [7]:

�

�

�

�

�

�

�

�

�

�

� �

�

L l

l
i

i
l lm

( )
, , ,

�

� �

0 1 2 3. (10)
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For solving the system of equations (10) we shall employ the small parameter method [7], where the

quantity inverse to the signal-to-noise ratio will be used as a small parameter, i.e., small parameter � �1/ z

(9). Restricting our consideration to the first approximation, we shall obtain the following expression for

quasi-likelihood estimate:

� �

�

l l nm � �

�

* I
1

, (11)

where due to formula (5) vector random quantity
�

n consists of the following coordinates:

n
N l

l
ii

i
l l

�

�

�

�

�

� �

�

( )
, , ,

*

�

� �

1 2 3.

In expression (11) I is the quasi-information matrix defined by expression

I � �

�

� �

�

�

�
�

�

2

0
1 2 3

S l l

l l
i j

i j
l l

( , )
, , , ,

*

� �

� �

. (12)

Substituting expression (6) into (12) we obtain an explicit expression for quasi-information matrix:

I �

�

�

�

�

�

�

�

�

s t l

s t l

s t l

l

s

i
l l

( , )

( ( , ) )

( , ) (

*
*

�

�

�

� �

0

1 1

2

1 1




t l

l
t

j
l l

T
, )

*

�

� �

�

�

�

�

�

�
d

0

�

�

�

� �

�

�

�

�

�

s t l

s t l

s t l

l li j
l l

T
( , )

( , )

( , )

*
*

�

�

�

� �

0

1 1

2

1

0



dt, i, j = 1, 2, 3. (13)

If 
 
� 1 and the waveforms of received signal s t l( , )

�

and expected signal s t l1( , )

�

coincide, the

quasi-information matrix coincides with the Fisher information matrix [3].

Let us introduce into consideration matrix

I
0 0

2

0

�

�

�

�

�

�

�

�

�

�

s t l

s t l

s t l

l

T

i
l

( , )

( ( , ) )

( , )

*

�

�

�

� �





1 1

1

l
j

l l

s t l

l
t

* *

( , )�

�

�

�

�

�

1
d

�

� �

, i j, , ,�1 2 3, (14)

that shall be called shortened information matrix. It should be noted that the shortened matrix consists of the

second partial derivatives of correlation function B l lN ( , )

� �

1 2 (8) of noise function N l( )

�

(7):

I
0

2

1 2

1 2
1 2

1 2 3�

�

� �

�

� �

B l l

l l
i j

N

i j
l l l l

( , )
, , , ,

* *,

� �

� � � �

.

Matrices I and I
0

allow us to obtain the following expression for the correlation matrix of

quasi-likelihood estimates [7]:

K I I I�

� �1 0 1
. (15)
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Let us render concrete the expected signal s t l1( , )

�

by writing it in the form similar to the signal received

(2):

s t l s t R V A1( , ) ( , , , )

�

� 1 � � � � �

�

�

�

k

N

s t R c k V c

0

1

1 2 1 2( / ( )( / )� � � �A k c( ) / )� �

2 2
. (16)

Here function s t1( )describes the waveform of intensity of one expected optical pulse, and in the general case

s t s t1( ) ( )� from expression (2).

We shall assume that the duration of functions s t( ) and s t1( ) is less than the pulse-repetition cycle �,

because the pulse ratio of sequences (2) and (16) is no less than 3…4. In addition, functions s t( ) and s t1( )

should be differentiable. This ensures the differentiability of signals s t l( , )

�

(2) and s t l1( , )

�

(16) with respect to

all estimated parameters. Substituting expressions (2) and (16) into (13) and (14) we obtain that

quasi-information matrices can be presented in the form:

I �

1

4 4 2

4 4 2

2 2

2

0 1

2

2

1

2

2

3

3

2

2

3

3

c

M M M

M M M

M M

� � �

� � �

� �

� �

� � �

� � �

4

4
�M

�

 

!

!

!

!

"

#

$

$

$

$

, (17)

I
0

2

0

0

1

0 2

2

0

1

0 2

2

0 3

3

0

2

2

1

4 4 2

4 4 2

2

�

c

M M M

M M M

M

� � �

� � �

�

� �

� � �

�

0 3

3

0 4

4

0
2� �

� �M M

�

 

!

!

!

!

"

#

$

$

$

$

, (18)

where

� ( )M kn k

k

N
n

� �

�

�

�
% �

0

1

, � ( )M kn k

k

N
n0 0

0

1

� �

�

�

�
% � ,

%







k
k

T
s t

s t

s t

t
t

0

1 1

2

0

1

2

�

� �

�

�

 

!

"

#

$
�

( )

( ( ) )

( )& d

d

d ,

%




k
k

T

s t

s t

t

s t

t
t�

�

�

�

1

1

1

0
( )

( ) ( )

1

d

d

d

d

d
&

, (19)

& k R R c k V V c� � � � �2 20 0( ) / ( ) ( ) /* *� � � � �( ) ( ) /*k A A c� �

2 2

0 ,

where R*,V*, and A* are the values of target motion parameters that ensure the maximum value of function

(6).

Thus, the dispersion and correlation of quasi-likelihood estimates can be generally obtained from

expression (15) by substituting therein expressions (17) and (18). This involves the need of inversion and

multiplication of 3'3 matrices that may require cumbersome manipulations. In addition, the determination

of parameters R*, V*, and A* involves the need of numerical solution of the system of transcendental

equations [ ( , ) / ] , , ,
*

� � � �

�

S l l l ii
l l

� �

� �

0 0 1 2 3[7]. Biases of quasi-likelihood estimates of signal parameters (11)

have the form:

b R R R R Rm( ) *� � � � � �0 0,
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b V V V V Vm( ) *� � � � � �0 0,

b A A A A Am( ) *� � � � � �0 0,

and in the general case they are not equal to zero. Moreover, since biases of estimates do not depend on the

signal-to-noise ratio, but are determined by the waveform of intensity of received s t( ) and expected s t1( )

signals, in the general case quasi-likelihood estimates are not consistent [7]. The comparison of results of

calculations by formula (15) with the correlation matrix of maximum likelihood estimates (obtained in paper

[3]) make it possible to determine the losses in accuracy of quasi-likelihood estimates of range, velocity and

acceleration as compared with the accuracy of maximum likelihood estimates.

Let us consider a particular case of consistent quasi-likelihood estimates. From the analysis of signal

function (6) it follows that the quasi-likelihood estimates of range, velocity and acceleration are consistent

and unbiased, if the intensities of received s t( ) and expected s t1( ) signals satisfy the following conditions:

— both these functions have maximum in one and the same point t0;

— they decrease on the time interval ( , )t0 ( ;

— they are even with respect to t0.

If these conditions are fulfilled, then R R* � 0, V V* � 0, and A A* � 0, quasi-likelihood estimates are

unbiased and consistent, and in relationships (19) & k �0, k N� �0 1, ,� .

The specified conditions are satisfied, in particular, by quasi-rectangular pulses having the form [18]:

s t2( , , )) *

+ +

�

� �

��

 

!

"

#

$

�

�

�

�

�

�

�

�

,

�

-

�

a

t t

t

exp , ,

,

�

*
)

*

)

*

)

*

2

1

2

1

2

1
1

2

2

2
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!

"

#

$

�

�

�

�
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�
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�
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�
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/

0

0

0

0
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0

0

0
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*
)

*

)

*

2

1

2

1

22

2
t t

0

, (20)
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0
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0
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�

a
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1
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2
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*
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!

"
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$

�
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�

�

�

�

.

/

0

1

0

2

3

0

4

0
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�

1

2
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1

,
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.

/

0

0

0
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0

*

2

,

, (21)

where ) �

�(

(

�
s t t s t

2 2
( ) / [max ( )]d is the equivalent pulse duration, * ( )0 1	 -* is the parameter equal to the

relative fraction of pulse energy concentrated at its edges.

Examples of the functions satisfying the specified conditions are also presented in paper [4].

In the case of a consistent estimate, quantities% k and% k

0
become independent on k, while numbers �M n

and �M n

0
turn into the following numbers:

� , �M M M Mn n n n� �% %

0 0
,

where M kn

n

k

N
� �

�

�

�
( )�

0

1
, %




�

�

�

1

1 1

1

0 s t

s t

t

s t

t
t

T
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( ) ( )d

d

d

d
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0

1

2

1

2

0
�

�
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�

 

!

"

#

$
�
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s t

s t

t
t
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( ( ) )

( )

1

d

d

d .
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Thus, for expressions (17) and (18) we obtain the following relationships:

I �

�

 

!

!

!

%

� �

� � �
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c

M M M

M M M

M M M

2
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3
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4

4 4 2

4 4 2

2 2!
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#

$

$

$

$

,
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0

0

2

0 1

2

2

1

2

2

3

3

2

2

3

3

4

4

4 4 2

4 4 2

2 2

�

�

 

!

%

� �
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c

M M M

M M M

M M M

!

!

!

"

#

$

$

$

$

.

Next, from formula (15) we have the following expression for the correlation matrix of consistent

quasi-likelihood estimates of range, velocity and acceleration:

K �

� � � �

c

M M M M M M M M M M

2
0

2

1 3 0 4 2 2

3

0 3

2

1

2

4
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2
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�
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1

4

1

2

1

4

2 4 3

2

2 3 1 4
2
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2

2 3

( ) ( ) ( )

(
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�
�

�

M M M M M M M M M

M M M

1 4
2

0 4 2

2

3
1 2 0 3

2
1 3 2

2

1

4

1

2

1

2

1

2

) ( ) ( )

( )

� �

�

� �

�

� �

3
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4
0 2 1

21
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!
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$

$

$

$

. (22)

Substituting s t s t1( ) ( )� and 
 
1 � into expression (22), we obtain the correlation matrix of maximum

likelihood estimates of range, velocity and acceleration [3]:

K F

c

M M M M M M M M M M

�
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1 3 0 4 2 2
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1 4
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1
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, (23)

where �

( )

( )
%
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#

$
�

1
2

0
s t

s t

t
t

T
d

d

d .

Comparing expressions (22) and (23) we can see that they differ only in their coefficients preceding

matrices. Thus, ratio 5 of corresponding dispersions and correlations of the quasi-likelihood consistent

estimate and the maximum likelihood estimate is the same for all estimated parameters of motion (range,

velocity and acceleration) and has the form:
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is the dispersion of quasi-likelihood estimate of one of the parameters R, V or A, while D is the

dispersion of the maximum likelihood estimate of the same parameter.

For the analysis of quantity 5 it is expedient to pass to dimensionless variables. To this end, we shall

present the intensity waveform of individual pulses in the form s t af t( ) ( )� , s t a f t1 1 1( ) ( )� , where symbol a

designates the maximum of signal s(t), while symbol a1 designates the maximum of signal s1(t). Thus the

maxima of functions f t( ) and f t1( ) are equal to unity. Let us introduce the dimensionless quantities having

the meaning of the ratio of intensities of signal–background
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Using the specified designations the ratio 5 of the corresponding dispersions and correlations of the

consistent quasi-likelihood estimate and the maximum likelihood estimate assumes the form:
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Let us introduce auxiliary functions:

g t

qf t

f t

t
( )

( )

( )
�

�

1

1

d

d

, g t
qf t

q f t

f t

t
1

1 1

1
1

1

( )
( )

( )

( )
�

�

�

d

d

.

Expressing relationship (24) in terms of these functions we obtain:
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Hence, due to the Bunyakovskii–Schwarz inequality it follows that 5 ,1 and 5 �1 only at

g t g t1( ) ( )�const .

Let us render concrete expression (24) for the case of weak optical pulses, when a0 		 
and a1		 
1. To

this end, we shall pass to the limit in expression (24) at q 6 0 and q1 06 . As a result, we obtain
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. (25)

As follows from relationship (25), the loss in estimate accuracy for weak optical pulses does not depend

on the difference of their maximum intensities (a and a1). Figures 1–4 present the relationship 5 70( ) of the

loss (25) in accuracy of the quasi-likelihood estimate for signals (20) and (21) in comparison with the
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accuracy of maximum likelihood estimate as a function of the duration ratio 7 ) )� / 0 of the expected and

received signals. Solid lines were calculated for the parameter value * �1, dashed lines—for * � 0.5 and

chain-dotted lines—for * � 0.1. For Fig. 1 we selected the received signal s t s t( , ) ( , , )) ) *0 2 0 1� � and

expected signal s t s t1 2( , ) ( , , )) ) *� . For Fig. 2 we selected s t s t( , ) ( , , )) ) *0 3 0 1� � and s t s t1 3( , ) ( , , )) ) *� .

For Fig. 3 we selected s t s t( , ) ( , , )) ) *0 2 0 1� � and s t s t1 3( , ) ( , , )) ) *� and for Fig. 4 we selected

s t s t( , ) ( , , )) ) *0 3 0 1� � and s t s t1 2( , ) ( , , )) ) *� . As follows from plots in Figs. 1–4, the loss in accuracy of

quasi-likelihood estimate of motion parameters can be significant.

Examples of the calculation of the accuracy loss for the quasi-likelihood estimate are also presented in

paper [4], where the acceleration was assumed known a priori.

The determined characteristics of quasi-likelihood estimates allow us to make a reasonable choice of the

algorithm of estimation and the intensity waveform of expected signal depending on the available a priori

information and the admissible loss in the accuracy of estimate.
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