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Abstract—Asymptotic expressions for the characteristics of quasi-likelihood estimation of image area

have been obtained by using the local Markov approximation method. It was shown that the accuracy of

area estimation is determined by the magnitude of intensity jump over the boundary limiting the area

occupied by image.
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The problem of area estimation of images, the intensity distribution of which is exactly known a priori

was considered in papers [1–3] and others. In real tasks the conditions of distant formation of radio and

optical images generally do not ensure the a priori knowledge of exact distribution of image intensity. In this

connection it may be interesting to consider the area estimation problem for a non-uniform image, the

intensity distribution of which is not exactly known.

Let us assume that the following realization of random field is available for processing in domain G:

� �( , ) ( , , ) ( , )x y S x y n x y� �0 0 , x y G, � , (1)

where

S x y F x y I x y0 0 0 0( , , ) ( , ) ( , , )� �� , (2)

S x y0 0( , , )� is the useful image with intensity F x y0( , ) that occupies domain �( )� 0 having area � 0. The

shape of domain �( )� with image area � is determined by the following indicator:
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Term n x y( , ) in expression (1) represents a realization of the Gaussian spatial white noise with one-sided

spectral density N 0, while the unknown area of image � 0 assumes values from a priori interval

[ min� , � max ].

In many applied problems of image processing the distribution of image intensity F x y0( , ) is known

inaccurately. Therefore, for synthesizing an estimation algorithm of the useful image area by using the

maximum likelihood method we shall employ the image

S x y F x y I x y( , , ) ( , ) ( , , )� �� , (3)

where F x y( , ) specifies the expected (predicted) distribution of image intensity. It is noted that in the general

case F x y F x y( , ) ( , ) 0 .
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For obtaining estimate � m of area � 0 of image (2) in accordance with the maximum likelihood method

[4] it is necessary to form the logarithm of likelihood ratio functional (LRF) [5]:

L
N

( )� �
2

0

� � �( , ) ( , ; ) ( , ; )x y S x y x y
N

S x y x y

G G

d d d d�� ���
1

0

2
, (4)

for all values � �� [ min , � max ]. The realization of observed data (1) contains image (2) that in the general

case differs from image (3), for which the LRF logarithm is formed. Hence, estimate� m of area� 0 of image

(2) defined as position of the absolute (largest) maximum of function (4)

� �m L�argsup ( ), � �� [ min , � max ] (5)

is not a maximum likelihood estimate (MLE). This estimate may be called quasi-likelihood estimate (QLE)

[6], since it coincides with MLE provided F x y F x y( , ) ( , )� 0 .

In order to determine characteristics of the area quasi-likelihood estimate (5), we shall present expression

(4) in the form of signal component and noise function [7]:

L S N( ) ( ) ( )� � �� � , (6)

S S( ) (� �� 0, � �) ( ) /�Q 2, (7)

N
N

n x y S x y x y

G

( ) ( , ) ( , , )� �� ��
2

0

d d , (8)

Q
N

S x y x y

G

( ) ( , , )� �� ��
2

0

2
d d , (9)

S (� 0, � � �) ( , , ) ( , , )� ��
2

0

0 0
N

S x y S x y x y

G

d d , (10)

where S ( , )� �0 is the signal function. Noise function N( )� is the realization of centered Gaussian random

process having correlation function:

B N N( , ) ( ), ( )� � � �1 2 1 2� � � � ��
2

0

1 2
N

S x y S x y x y

G

( , , ) ( , , )� � d d . (11)

Let signal component S ( )� (7) reach its maximum at certain point

~
( )� ��argsupS , � �� [ min , � max ]. (12)

Then the signal-to-noise ratio (SNR) [4] assumes the form:

z S B S Q
2 2 2
� �(

~
) / (

~
,
~

) (
~

) / (
~

)� � � � � . (13)

Let us assume that signal-to-noise ratio (13) is sufficiently large, so that QLE of the area possesses high a

posteriori accuracy. In this case for determining the QLE characteristics it is sufficient to analyze the

behavior of functions (7), (9), (10), and (11) in the small neighborhood of point
~� (12).

Let us introduce designation �min ( , )� �1 2 for that domain of two (�( )� 1 and �( )� 2 ), which has a

smaller area. Next, substituting expressions (2) and (3) into (7), (9)–(11) we have
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S (� 0, �

� �

) ( , ) ( , )

min ( , )

� ��
2

0

0

0

N
F x y F x y x yd d

�

, (14)

Q
N

F x y x y( ) ( , )

( )

�

�

� ��
2

0

2
d d

�

, (15)

B
N

F x y x y( , ) ( , )

min ( , )

� �

� �

1 2

0

22

1 2

� �� d d

�

. (16)

For investigating the local behavior of functions (14)–(16) in small neighborhood of point
~� (10) we shall

introduce the following auxiliary function:

~
( , )

~
( , )

min [ , ]

S
N

F x y x y� �

� �

1 2

0

2

1 2

� �� d d

�

, (17)

where
~

( , )F x y � 0 and function
~

( , )F x y is limited in the entire observation domain G. Substituting

appropriate functions in place of
~

( , )F x y into expression (17), we can obtain expressions (14), (15), and (16).

Let us designate

� � � �min[
~

,
~

]� � � �1 2 .

Then, in accordance with the definition

� � �min ( , ) (
~

)� � �1 2 � �

expression (17) can be rewritten in the form:

~
( , )

~
( , )

(
~

)

S
N

F x y x y� �

�

1 2

0

2
�

�

�� d d

� �

. (18)

Let us consider the asymptotic behavior of relationship (18) assuming that

� �� � � � �� � � �max |
~

| ,|
~

|1 2 0. (19)

Then it is obvious that � � 0. Let us designate the domain of unit area having the shape of image area as

�E . Let us also assume that equations x f� ( )� and y �� �( ) of the boundary C E limiting domain �E

(0 2� �� �) are specified. Then the equations of boundary C( )� limiting domain �( )� have the form:

x f� ( )� � , y �� � �( ) . (20)

Using expression (20) we can rewrite expression (18) in the polar coordinate system:

~
( , )S � �1 2 � � �

� �
2

0
0

2

0

2 2

N
F d

f

d� � � � � � �

� � � � �
~

( cos , sin )

(
~

)( ( ) ( ))�

. (21)

Expanding expression (21) into power series in terms of � and limiting our consideration to the first two

terms of the series, we obtain an asymptotic expansion for function (18) provided condition (19) is satisfied:
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)S S� � � �1 2 � � � � �
~

(
~

) min[
~

,
~

] ( )A � � � � � � �1 2 , (22)

where

~
(
~

)
~ ~

( ( ) ( )) cos ,A
N

F f� � � � � �

�

� �
�

 
!�

1

0

2 2

0

2

~
( ( ) ( )) sin ( ( ) ( ))� � � � � � � � �f f

2 2 2 2
�

"

#
$ � d

� ��
1

0N
F x y x y y x

C

~

~
( , )( )

(
~

)
�

�

d d � ��
1

0

2 2

N
F x y x y s

C

~

~
( , )

(
~

)
�

�

d , (23)

~
(
~

)A � is the coefficient, the value of which is determined by only values of function
~

( , )F x y in expression (18)

over boundary C(
~

)� limiting domain�(
~

)� with area
~�. Indeed, in accordance with expression (23) the value

of coefficient
~

(
~

)A � does not depend on the values of function
~

( , )F x y in expression (18), which it assumes in

the internal points of domain �(
~

)� . Henceforth we shall limit ourselves with the use of main terms of

asymptotic expansion (22). Then the following approximate expressions will be valid for signal component

(7) and correlation function (11) of noise function (8) in the small neighborhood of point
~�:

S S( ) (� �� 0,
~

) (
~

) /� ��Q 2 � � � � �A A0 0 2(
~

) min[
~

,
~

] (
~

)(
~

) /� � � � � � � � , (24)

B B A( , ) (
~

,
~

) (
~

) min[
~

,
~

]� � � � � � � � �1 2 1 2� � � � , (25)

where

A
N

F x y F x y x y y x

C

0

0

0

1
(
~

)
~

( , ) ( , )( )

(
~

)

�
�

�

� �� d d ,

A
N

F x y x y y x

C

(
~

)
~

( , )( )

(
~

)

�
�

�

� ��
1

0

2
d d . (26)

In accordance with expression (25) the realization of noise function N( )� (8) is continuous with unitary

probability [7]. Hence, given the unlimited rise of SNR z (13), QLE (5) is a consistent estimate, if

~� �� 0. (27)

Using asymptotic expansion (24) we can find the conditions under which QLE (5) is consistent and

condition (27) is obeyed. From relationship (24) for the derivative of the signal component at point� 0 on the

right ( )� �� 0 we obtain:

d dS A( ) / ( ) /� � �
�0 0 0 2

�
� � .

In accordance with expression (26) condition A( )� 0 0% is always fulfilled, hence signal component (7) in

small neighborhood of � 0 at � �� 0 is a decreasing function. For the derivative of signal component (7) at

point � 0 on the left, i.e. at � �� 0, we obtain from expression (24):

d dS ( ) /� � �
�0 0�

� ,
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where

�
�

�
1

0 0N
F x y F x y F x y x y y x

C

( , ) ( , ) ( , ) ( )

( )

0

1

2
0

�
�
	



&
'
(

�� d d

�

. (28)

If

� %0 (29)

signal component S ( )� (7) in small neighborhood of � 0 at � �� 0 is an increasing function that reaches its

maximum at point � 0. Thus expression (29) is a necessary and sufficient condition of QLE (5) consistency

and then from condition (29) it follows that condition (27) is fulfilled. The test of necessary and sufficient

condition (29) of QLE consistency involves the need of calculating the contour integral (28) that is not

always an easy task. That is why we shall show another simple and easily tested sufficient condition of QLE

consistency. It is obvious that condition (29) is always satisfied if

F x y F x y x y G0 2( , ) ( , ) / , ( , )% � .

If this condition is not satisfied, it is necessary to test the necessary and sufficient condition (29).

Let us realize the obtained general relationships for a particular case of uniform observed image

F x y D0 0( , ) � � const (30)

and uniform expected image

F x y D( , ) � � const. (31)

If conditions (30) and (31) are satisfied, approximate expressions (24) and (25) that are asymptotically

exact in small neighborhood of point
~� transform into exact formulas [1], while the necessary and sufficient

condition of QLE consistency (29) assumes the form

D D0 2% / . (32)

Next we shall assume that condition (32) of QLE (5) consistency is obeyed and equality (27) holds. Then

asymptotic expansions of signal component (24) and correlation function (25) of the noise function can be

rewritten in the form:

S S
Q

( ) ( , )
( )

� � �
�

� �0 0
0

2

� �
)

� %

�
	



( )
, ,

, ,
� �

� �

� �
0

1 0

2 0

a

a

B B( , ) ( , )� � � �1 2 0 0� � � �2 2 1 0 2 0a min[ , ]� � � � , (33)

where

a1 ��, a A2 0� ( ) /� 2. (34)

In accordance with expression (33) the process described by expressions (4) and (6) in the small

neighborhood of the true value of area� 0 is Gaussian Markov random process [7]. In this neighborhood the

drift and diffusion coefficients of process L( )� have the form [7]:
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K
a

a
1

1 0

2 0

�
)

� %

�
	



, ,

, ,

� �

� �
K a2 22� . (35)

The established properties of signal component (7) and noise function (8) allow the local Markov

approximation method [9] to be used for finding the characteristics of QLE � m (5). Using this method for

solving the Fokker–Planck–Kolmogorov equation [8] with coefficients (35) we find asymptotically (with

the rise of signal-to-noise ratio z) the exact expressions for the bias (systematic error) and dispersion

(average squared error) of QLE (5):

b m m( | )� � � �0 0� � � � �
� � �

�

z R z R R

z z R

1

2

2

2

1

2

2

2 2

2 1 2

2 1

( ) ( )

( )

, (36)

V m m( | ) ( )� � � �0 0

2
� � � � �

� � � � �

�

z R R R z R R

z z R

2

4 2

1

4 2

1

4

2

4 3

2 6 5 5 6 2

2 1

( ) ( )

( )

, (37)

where z a a1

2

1

2

22� / , z a2

2

2 2� / , R a a� 2 1/ .

In expressions (36) and (37) averaging is performed at the fixed true value � 0 of the estimated area.

Therefore, these expressions determine the conditional bias and dispersion of the area QLE. The obtained

results make it possible, as a particular case, to find the MLE �� characteristics of area � 0 of image (2). The

realization of the maximum likelihood algorithm involves the need of a priori knowledge of image intensity

distribution F x y0( , ). Then, substituting S x y( , , )� (3) with S x y0( , , )� (2) in expression (4) we can obtain

MLE �� from expression (5). In a similar way the MLE characteristics can be determined by assuming

F x y F x y( , ) ( , )� 0 in expressions (36) and (37). As a result for the bias and dispersion of area MLE of

non-uniform image we get:

b( � | )� � 0 0� ,

V A( � | ) /� � 0 0

2
26� , (38)

where similar to expression (23)

A
N

F f0

0

0

2

0

2 2

0

2
1

� �
�

 
!� � � � � �

�

( ( ) ( )) cos ,

� � � � � � � � �0

2 2 2 2
( ( ) ( )) sin ( ( ) ( ))f f�

"

#
$ � d

� ��
1

0 0

0

2

0

N
F x y x y y x

C
�

�

( , )( )

( )

d d � ��
1

0 0

0

2 2 2

0

N
F x y x y s

C
�

�

( , )

( )

d . (39)

As follows from expression (2), the non-uniform image intensity over boundary C( )� 0 limiting domain

�( )� 0 occupied by image undergoes a jump from value F x yc c0( , ) on the internal side of boundary C( )� 0

to zero on the external side of the boundary. Here x c and y c are the coordinates of the point belonging to

boundary C( )� 0 . Formulas (38) and (39) indicate that the dispersion of area MLE depends only on the

contour integral over C( )� 0 that “summates” the values of squared intensity jump during the passage

through boundary C( )� 0 over all points of this boundary.

Correspondingly, the asymptotic value of dispersion (38) of area MLE does not depend on the values of

image intensity F x y0( , ) assumed inside boundary C( )� 0 , i.e. at internal points of domain�( )� 0 . Hence, it

follows in particular that the selection of the expected (predicted) intensity distribution F x y( , ) used for
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obtaining the area QLE should be performed in a way ensuring the maximum closeness of this function to

the true intensity F x y0( , ) over boundary C( )� 0 limiting the image.

As an example we shall consider the estimation of area of the image with linearly changing intensity. Let

the image domain represent a circle with the center at the origin of coordinates and radius � �0 / . Let us

also assume that the intensity of observed image changes linearly along the x-axis, so that

F x y
E

q q

0
0

0
0

2

0

2

1

1

16

1

4

( , )

( ) ( )

�

�
�

��
	
*


*

&
'
*

(*

�

( ) ( )1

2

1

2

0

0

0�
�

�

�

 

!
!
!
!

"

#

$
$
$
$

q
x

q

�

�

, (40)

where E F x y x y0 0

2

0

� �� ( , )
( )

d d
� �

is the energy of observed image, parameter

q
b

a
0

0

0

� (41)

characterizes the slope of the function specifying the intensity,

a F0 0 0 0� ( / , )� � ,

b F0 0 0 0� �( / , )� � .

We assume that the expected image has the following intensity:

F x y
E

q q

( , )

( ) ( )

�

�
�

��
	
*


*

&
'
*

(*

0

0
2 2

1

1

16

1

4
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( ) ( )1

2

1

2
0

�
�

�

�

 

!
!
!
!

"

#

$
$
$
$

q
x

q

�

�

,

that is different form the intensity of observed image only by its parameter q. Let us consider the effect of the

difference between the values of parameters q0 and q on the estimation accuracy of circle area with linearly

changing intensity. Substituting expressions (40) and (41) into (34) and (39) we find:

a
N

E

1

0

0

0

2
�
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1

8

1 1
1

4

1 1

1
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2
2

2 2N

E

q
q

q q�

( )
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( ) ( )�
	
*


*

&
'
*

(*

,

a
N

E q q

q q
2

0

2 2

0

2 2

1 1 8 1 4

1 16 1 4

�
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(( ) / ( ) / )

(( ) / ( ) / )�
, (42)

A
N

E q q

q q
0

0

0

2

0

2

0 0

2

0

2

2 1 8 1 4

1 16 1

�
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� � �

(( ) / ( ) / )

(( ) / ( ) /� 4)

. (43)
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Substituting expression (42) into (36) and (37) we find characteristics of the area QLE. Next, substituting

expression (43) into (38) we obtain the MLE characteristics of the circle area:

b( � | )� � 0 0� , V

A

( � | )� � 0

0

2

26
� .

Figure 1 presents the relationship of the normalized bias

+ ,
� �

� �
( )

( | )

( | )

�
b

V

m

m

0

0

of the area QLE of the image with linearly changing intensity as a function of parameter ,� q q/ 0 at

different values of q0. Solid curve corresponds to value q0 � 0.5; dashed line corresponds to q0 1� , and

dash-dotted line corresponds to q0 �2. Figure 2 presents the relationship of loss - , � � � �( ) ( | ) / ( � | )�V Vm 0 0

in the accuracy of QLE as compared with the accuracy of area MLE of image with linearly changing

intensity. Designations of curves in Fig. 2 are the same as in Fig. 1.

From the analysis of curves in Figs. 1, 2 it follows that at 0.5 < , < 2, i.e. 0.5q0 < q < 2q0 QLE is

practically unbiased, while its dispersion is only slightly higher than the MLE dispersion. Therefore, the area

QLE of the image with linearly changing intensity is not actually inferior in terms of accuracy to MLE if

parameter q of the expected image is different from the true value of parameter q0 of the observed image by a

factor of no more than two.
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Fig. 1. Fig. 2.
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