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Abstract—Characteristics of quasi-likelihood estimates of the target range, velocity, and acceleration
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Sequences of optical pulses are widely used in optical detection-and-ranging systems [1–5], etc. The

characteristics of jointly effective range, velocity and acceleration estimates were determined in [3], while

the threshold effects occurring due to the possible appearance of anomalous errors were investigated in [4].

In this case it was assumed that the intensity waveform of the pulse sequence scattered by target was a priori

known.

However, fluctuations of reflections from the target in real conditions and also physical effects

accompanying the light scattering and propagation result in distortion of the signal intensity waveform. If

the intensity waveform of signal scattered by target is known inexactly, the quasi-likelihood estimation can

be applied for measuring the range, velocity and acceleration [5].

The expressions obtained in [5] for the characteristics of reliable, quasi-likelihood estimates can be used

only under conditions of high a posteriori accuracy when anomalous errors are not present [6]. Next we shall

investigate the threshold characteristics of quasi-likelihood estimates of motion parameters with due regard

for anomalous errors.

Let us assume that sequence of optical pulses is radiated with the following intensity:
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where �( )s t is the function describing the intensity of individual optical pulse, � is the pulse period, � is the

time position of sequence. Parameter � determines the point of sequence (1) related to its time position �.

Hence, at � = 0 quantity � represents the time position of the first pulse, at � � �( ) /N 1 2 it represents the

time position of the middle of sequence (1), while at � � �N 1it is the time position of the last pulse.

As a result of scattering of probing sequence (1) by target, the intensity of signal received will have the

form [1, 3]:
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� 	 � �� � �( / ) ( ) / )1 2 0 0

2 2
V c A k c , (2)

where function s t( ) describes the intensity waveform of one scattered optical pulse of the sequence, and in

the general case it is different from �( )s t in expression (1), while c is the velocity of light. The following

designations are used in (2): R0 is the range,V0 is the velocity, and A0 is the target acceleration; in this case it

is assumed that the unknown range, unknown velocity, and unknown acceleration assume the values from a

priori intervals [ , ]R Rmin max , [ , ]V Vmin max , and [ , ]A Amin max , respectively. We assume that under the

terrestrial conditions the following inequalities are satisfied: | |V c0 

 and N A c�| |0 

 . The true values of

unknown parameters R, V and A of the received sequence of optical pulses (2) are marked with zero

subscript.

Let the signal with intensity (2) be observed on the time interval [0, T ]against the background of optical

noise representing a stationary Poisson process with intensity ��0. In this case signal 
( )t accessible for

processing represents a Poisson process with intensity

� �( , , , ) ( , , , )t R V A s t R V AN0 0 0 0 0 0� 	 ,

where parameters R0, V0, and A0 are subject to estimation.

Since the intensity waveform s t( ) and noise intensity � can be unknown, the synthesis of estimation

algorithm is performed for the signal with intensity

� �1 0 0 0 1 0 0 0 1( , , , ) ( , , , )t R V A s t R V AN� 	 ,

where �1 is the expected intensity of optical noise, while
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where s1N is the intensity of the sequence with the expected intensity waveform of one pulse s t1( ).

If the intensity waveform of received signal (2) and the intensity of optical noise �are a priori known, the

estimation of motion parameters ( , , )R V A can be performed by using the maximum likelihood method [6].

To this end, it is necessary to use the position of the absolute (largest) maximum of the logarithm of

likelihood ratio functional [3, 4, 8]:
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If the intensity waveform of signal (2) and the noise intensity are known inexactly, the signal intensity

s t R V AN ( , , , ) and noise intensity � in formula (4) should be replaced with the expected signal intensity

s t R V AN1 ( , , , ) (3) and noise intensity �1. Thus, we obtain the following expression for decision making

statistic [5]:
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Therefore, quasi-likelihood estimates ( � , � , � )R V A of motion parameters represent the position of absolute

maximum of random field (5):

( �R, �V , � ) ( , , )A L R V A�argsup , ( , , )R V A �W, (6)

where
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W �{[ , ],[ , ],[ , ]}R R V V A Amin max min max min max , (7)

where W is the a priori domain of possible values of the range, velocity and acceleration.

Estimate (6) will be called quasi-likelihood [5]. Indeed, in case the intensities of received signal

s t R V AN ( , , , ) (2) and expected signal s t R V AN1 ( , , , ) (3) coincide and the true and expected intensities of

optical noise (� and �1) also coincide, the decision making statistic (5) coincides with the logarithm of

likelihood ratio functional (4). Hence, the quasi-likelihood estimate (6) transforms into the maximum

likelihood estimate.

In order to determine the threshold characteristics of quasi-likelihood estimate (6), we shall present the

decision making statistic (5) in the form of a sum of the signal and noise functions [5, 6]:

L R V A( , , ) � 	 	S R V A R V A N R V A C( , , , , , ) ( , , )0 0 0 , (8)

where signal function
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where C is an inessential constant that can be neglected in what follows. Hereafter the angular brackets

designate the operation of averaging over a set of realizations.

Noise function

N R V A L R V A L R V A( , , ) ( , , ) ( , , )� � � � (10)

is the realization of random field, moreover
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The derivation of signal function (9) and correlation function (11) of noise function (10) was performed

under an assumption that

max{| | ,| | ,| | ,| |}R R R R R R R R� � � �0 1 2 1 0 2 0 � c� /2,

max{| | ,| | ,| | ,| |}V V V V V V V V c� � � � 

0 1 2 1 0 2 0 ,

N A A A A A A A A� max{| | ,| | ,| | ,| |}� � � �0 1 2 1 0 2 0 

 c,

hence formulas (9) and (11) describe central peaks of appropriate functions.

Let signal function (9) at the fixed values ( , , )R V A0 0 0 reach its largest value at point ( , , )R V A
* * *

and

have only one pronounced maximum. Then the signal-to-noise ratio z at the output of quasi-likelihood meter

can be written as follows:
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where

� k R R c k V V c� � 	 � �2 20 0( ) / ( ) ( ) /
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2 2

0

*
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If the signal-to-noise ratio (12) is sufficiently large, quasi-likelihood estimates are reliable [6] and their

characteristics can be found by using the results of paper [5]. However, if the signal-to-noise ratio (12) is not

large enough, while the size of a priori domain (7) of possible values of motion parameters is substantially

larger than the duration of the central peak of signal function (9), it may lead to the appearance of anomalous

errors [6]. Consequently, the threshold effects arise that result in a significant degradation of the accuracy of

quasi-likelihood estimates.

Let us assume that �R, �V , and �A are the durations of signal function (9) in terms of appropriate

arguments. Then, it is evident that

S R V A R R V A( , , , , , )0 0 0

* * *
� �

� S R V A R V V A( , , , , , )0 0 0

* * *
� �

� �S R V A R V A A( , , , , , )0 0 0 0
* * *

� � .

Let us introduce the following designation:

WS R R R R� � 	{[ , ],
* *

� � [ , ],[ , ]}V V V V A A A A
* * * *
� 	 � 	� � � � ,

where WS is the subdomain of a priori domain W (7) of possible values of the range, velocity, and

acceleration, where the central peak of signal function (9) is essentially different from zero. Then, we can

introduce into consideration the probability of reliable estimate [6]:

P P R01 � [( � , �V , � ) ]A S�W , (13)
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that can be used for the description of threshold properties of quasi-likelihood estimate (6).

An approximate value of the probability of reliable estimate (13) can be determined if the Gaussian

approximation of the distribution of decision making statistic (5) is admissible. The distribution of decision

making statistic (5) can be approximated with the Gaussian distribution if the following condition is fulfilled

[7]:

N� �min( , �1 1)�� , (14)

where � and �1 are the durations of received s t( ) and expected s t1( ) signals, respectively.

In addition, let a priori domain (7) of possible values of the range, velocity and acceleration contain

sufficiently many resolution cells so that at least one of the following inequalities is satisfied:

( ) /R R Rmax min� ��� 1,

( ) /V V Vmax min� ��� 1,

( ) /A A Amax min� ��� 1. (15)

By virtue of the definition of quasi-likelihood estimate (6) relationship (13) can be rewritten in the form:

P P H HS N01 � �( ), (16)

where

H L R V AS � sup ( , , ), ( , , )R V A S�W ,

H L R V AN � sup ( , , ), ( , , )R V A N�W , (17)

while WN is the complement WS to W (7) so that W W W� �S N . Provided conditions (15) are satisfied,

random quantities H S and H N are roughly statistically independent [8] and expression (16) assumes the

form:

P F H F HN S01 �

��

�

�
( ) ( )d , (18)

where F HN ( ) is the distribution function of random quantity H N , F HS ( ) is the distribution function of

random quantity H S .

Since subdomain WS roughly coincides with the domain of high correlation of random field (5), given

the sufficiently large values of signal-to-noise ratio (12), in accordance with expression (17) we can

approximately assume that H L R V A L R V AS � �( � , � , � ) ( , , )
* * *

. Therefore, provided condition (14) is satisfied

and z1 1�� (12), random quantity H S has a roughly Gaussian distribution with mathematical expectation

m S R V A R V AS � ( , , , , , )0 0 0

* * *
(9) and dispersion S B R V A R V A

2
� ( , , , , , )

* * * * * *
(11). Correspondingly,

the distribution of random quantity H S (17) can be approximated with expression

F H H mS S S( ) [( ) / ]� �!  , (19)

where!( ) ( / ) /x t t
x

� �

��
�

exp d
2

2 2
 is the probability integral.

When( , , )R V A N�W , term S R V A R V A( , , , , , )0 0 0 0� in (8), while the expression for correlation function

(11) of noise function (10) assumes the form

B R R V V A A( , , , , , )1 2 1 2 1 2 � B R R V V A AN ( , , , , , )1 2 1 2 1 2
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Correspondingly, now random quantity H N (17) can be presented as follows:

H N R V AN � sup ( , , ), ( , , )R V A N�W . (21)

In accordance with expression (20), provided condition (14) is satisfied, noise function N R V A( , , ) in

expression (21) approximately represents a Gaussian uniform field. Therefore, F HN ( ) is a distribution

function of the largest maximum of the Gaussian uniform random field in subdomain WN .

Since the duration of each pulse of the expected sequence (3) is limited, correlation function (20)

B R V A R V AN ( , , , , , )1 1 1 2 2 2 tends to zero at | |R R1 2� " �, | |V V1 2� " �, and | |A A1 2� " �. That is why it

can be assumed that with the rise of H the distribution of the number of surges of field realization N R V A( , , )

in subdomain WN over level H converges to the Poisson law [9]. Therefore, for large but finite values of H

we can write [8, 9]

F H HN ( ) [ ( )]� �exp # ,

where #( )H is the average number of surges of the realization of Gaussian uniform random field with

correlation function (20) over level H in domain WN .

If condition (15) is satisfied, approximation#( )H represents the average number of surges over the entire

a priori domain (7) of possible values of the range, velocity, and acceleration.

Using [9] for the average number of field surges N R V A( , , ) with correlation function (20) in domain W

(7), we obtain the following expression:
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where + is the determinant, in which the derivatives of correlation function (20) are calculated at R R1 2� ,

V V1 2� , and A A1 2� .
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Differentiating in expression (24) and substituting the result of determinant calculation into expression

(23) we obtain
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where Q R R V V A A� � � �( )( )( )max min max min max min is the Euclidean volume of a priori domain W (7) of

possible values of unknown motion parameters.

Quantity *1 represents a reduced volume [8] of possible values of unknown range, velocity and

acceleration that determines the number of uncorrelated values of random field N R V A( , , ) in domain W (7).

Using expression (22) for approximating the distribution function of the largest maximum of noise

function (21), where condition (15) is satisfied, we obtain the following expression [8]:
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Substituting expressions (19) and (25) into (18) and making the change of integration variable H x N�  ,

we determine an approximate expression for the probability of reliable quasi-likelihood estimate of the

range, velocity and acceleration:

P01
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while z1 is determined by formula (12). The accuracy of approximate formula (26) improves with the rise of

*1 and z1 [8].

Formula (26) for the probability of reliable estimate is pretty cumbersome; hence, it can be used for

calculations only by applying numerical methods. That is why we shall find a simple upper bound for the

probability of anomalous errors P Pa1 011� � .

Having used inequality1� � �exp( )x x at x > 0, from expression (26) we get by analogy with [8]:
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In a particular case, when the intensity waveforms of the received and expected signals coincide

( ( ) ( )s t s t1 6 ), as well as optical noise intensities (� �1 6 ), expressions (26) and (27) transform into similar

expressions for the probabilities of reliable estimate and anomalous errors of the maximum likelihood

estimate [4]. To this end, it is only required to replace quantities z1, 31, and *1 in expressions (26) and (27)

with the following respective quantities:
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The substitution of expressions (28)–(30) into (26), (27) results in obtaining the known expressions [4]

for the maximum likelihood estimation. In particular, the probability of anomalous error Pa for maximum

likelihood estimation can be written by analogy with expression (27) in the form:

P
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Let us compare the probabilities of anomalous errors of quasi-likelihood estimate and maximum

likelihood estimate. Comparing expressions (27) and (31) we obtain
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This quantity shows how many times the probability of anomalous error increases due to the deviation of

the intensity waveform of received signal s t( ) from the intensity waveform of expected signal s t1( ), for

which the algorithm of quasi-likelihood estimation was synthesized.

Let us render concrete the above derived general expressions for a particular case when the intensity of

optical noise is a priori known (� �1 � ), while the intensities of received and expected signals differ only by

their duration so that

s t af t( ) ( / )� � , s t af t1 1( ) ( / )� � .

Here function f x( ) is normalized in such way that

max ( ) ( )f x f x x� �

��

	�

�

2
1d ,

while quantities � and �1 are the equivalent durations of the received and expected signals, respectively.
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We shall restrict ourselves to the situation where optical signals are weak (q a� 

/ � 1). Then

expressions for parameters determining the probability of anomalous error assume the form:

3 3 � �� � �1
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where 9 � �� 1 / , while
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where 8 is the correlation coefficient of received and expected signals.

Substituting expressions (33)–(35) into (32) we obtain an expression for the loss in the value of the

anomalous error probability:
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This quantity indicates to what extent the anomalous error probability changes due to the difference

between the duration � of received signal and the duration �1 of expected signal, for which the algorithm of

quasi-likelihood estimation was synthesized.

Let the intensity of optical pulse be described by the Gaussian curve so that

f x xG exp( ) ( / )� �


2
2 . (37)

Then correlation coefficient (35) assumes the form:

8 9 9G � 	2 1
2

/ ( ).

If the intensity of optical pulse is described by the Lorentz curve:
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, (38)

then correlation coefficient (35) assumes the form:

8 9 9L � 	2 1/ ( ).

RADIOELECTRONICS AND COMMUNICATIONS SYSTEMS Vol. 57 No. 1 2014

THRESHOLD CHARACTERISTICS OF QUAZI-LIKELIHOOD ESTIMATES OF PARAMETERS 47



Solid lines in Fig. 1 indicate the7 9( ) relationships (36) for the intensity of optical pulse described by the

Gaussian curve (37), while dashed lines indicate the same relationships for the Lorentz curve (38) at the

following signal-to-noise ratio values: z = 8 (curves 1) and z = 12 (curves 2). From Fig. 1 it follows that for

the Gaussian curve the loss in the value of anomalous error probability is larger than for the Lorentz curve. In

addition, this loss increases with the rise of the signal-to-noise ratio and with the growing deviation of9 from

unity.

The determined threshold characteristics of quasi-likelihood estimates allow us to make a reasonable

choice of the algorithm of estimation of the intensity and waveform of expected signal depending on the

available a priori information and the admissible rise of the anomalous error probability.
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Fig. 1.
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