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Abstract—A specific case where the image has the unknown area, regular component, and also the

random component intensity has been considered. A maximum likelihood algorithm for the detection of

stochastic image with unknown parameters was synthesized. Characteristics of the algorithm were

obtained, and the impact of image characteristics and applicative background on the detection efficiency

was analyzed.
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The rapidly evolving now automatic systems of image analysis are based on multistage procedures that

can include such stages as segmentation and classification of subsections of the image, the detection and

discrimination of object images, and estimation of parameters. For example, one of the processing stages in a

number of problems of the remote probing is the detection of objects on the basis of their images, when some

or all parameters of the image are a priori unknown.

In many cases the images obtained as a result of remote probing have a stochastic structure and can be

defined by a model of Gaussian random field [1, 2]. Unlike the case of thoroughly studied problems of

detection of regular random signals, the processing of images involves the need of taking into account not

only the additive noise, but also the background determined by the underlying surface. The presence of

background can essentially affect both the image detection characteristics [3] and estimation characteristics

of image parameters, such as its area [4].

The problem of detecting an image with unknown area in the presence of applicative background was

considered in [3], where the regular component and the intensity of random component were assumed to be

known. In a series of remote probing problems, such as detection of irregularities, the unknowns include not

only the area, but also the intensity of the irregularity picture and its regular component.

The authors have considered the detection problem of a Gaussian stochastic image with unknown

mathematical expectation, intensity and area observed against the Gaussian background in the continuous

space with due regard for the effect of background shading. Hence, a new detection algorithm was

synthesized, and asymptotic expressions for its characteristics were found.

Let us assume that random field realization x( )r is accessible for observation owing to the remote probing

in two-dimensional region G. Here r � ( , )r r1 2 is the radius-vector of point in the plane belonging to G. Field

x( )r can include a useful image of object s( )r , spatial noise n( )r and background radiation �( )r . This

radiation is determined by the scattering of the probing signal by the underlying surface, on which the

detectable object is located [1]. Assume that the image occupies region � s with unknown area � 0, i.e.,

� �s � ( )� 0 , where function �( )� defines the image shape with area � and can be presented by using
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The background shading effects occurring in practice may be taken into account by using an applicative

model of image and background interaction [1]. This model allows an observed realization in the presence of

image (hypothesis H1) to be presented in the form

H1: � �x I s I n( ) ( , ) ( ) ( , ) ( ) ( )r r r r r r�  � � � �0 01 ,

where � 0 is the true value of the unknown area of useful image � that takes on its value from interval

[ , ]min max� � . In the absence of image (hypothesis H0) the observed realization contains only the

background and spatial noise

H 0: x n( ) ( ) ( )r r r� � .

Next we assume that image s( )r and background �( )r represent uniform statistically uncorrelated

(mutually independent) Gaussian fields with mathematical expectations as , a
�

and correlation functions

Bs ( )r , B
�

( )r . In addition, we shall assume that spectral densities of image

G Bs s( ) ( )exp( )� �� �

��

�

�
r r rj d

and background

G B
� �

( ) ( )exp( )� �� �

��

�

�
r r rj d

are constant within the limits of regions of spatial frequencies�s and�
�

, respectively. The spectral densities

of image and background outside these regions are equal to zero, i.e.

G g Is s s( ) ( , )� �� � , G g I
� � �

�( ) ( , )� �� ,

where I( , )� � �1, at � ��and I( , )� � �0, at � � � .

Let us assume that spatial noise n( )r is uncorrelated with the image and background and represents a

realization of centered white Gaussian noise with zero average and single-sided spectral density N 0.

The problem consists in detecting the image with unknown area �, mathematical expectation as and

normalized intensity q g Ns s�2 0/ .

Now let us consider an algorithm for detecting image with unknown as , qs , and� based on the maximum

likelihood method. As is known [6], this method implies the replacement of unknown values of parameters

with their maximum likelihood estimates (MLE). Since MLE are the corresponding arguments of the largest

value of the logarithm of likelihood ratio functional (LRF), this algorithm of detection is reduced to

comparing threshold h and LRF logarithm L a qs s( , , )� maximized over the set of unknown parameters:

L L a q h

a q

s s

H

H

s s

�

�

�

�sup
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, ,

min max( , , ) , [ , ]

0

1

.

An explicit form of LRF logarithm L a qs s( , , )� for checking hypothesis H1 against alternative H0 at the

known parameters of image was obtained in [5]. Extending this result to the case of unknown area, we obtain
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min min

ln[ ] ln[ ]s sq q1 1 , (1)

where X xs ( ) ( )

( )

�

�

�

�
r rd

�

, Y yis i( ) ( )

( )

�

�

�

�

2
r rd

�

, i �1,2, y i ( )r are the signals at outputs of spatial filters with

transfer functions | ( )| ( , )H I s1

2� �� � , | ( )| ( , )H I2

2� �� �
�

, q g N
� �

�2 0/ is the normalized intensity of

background,� � �
�s S

s
� min / 4

2
is the number of degrees of freedom of image,� � �

� �
�

� min /S 4
2

is the

number of degrees of freedom of background, S
s�

and S
�

�

are the areas of regions �s and �
�

on the

frequency plane that are occupied by spectral densities of useful image Gs ( )� and background G
�

( )� ,

respectively.

Maximizing relationship (1) in terms of unknown values of as and qs we obtain:
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Then the algorithm of detection is reduced to the search for the absolute (largest) maximum of functional

(2) and its subsequent comparison with the threshold

L L h

H

H

�

�

�

�sup

�

� � � �( ) , [ , ]min max

0

1

.

Thus, the realization of the algorithm involves the need of forming three functions Y s1 ( )� , Y s2 ( )� , and

X s ( )� depending on the realization of observed data within the limits of region �( )� presumably occupied

by the image with area �.

The efficiency of the detection algorithm is generally characterized by the values of probabilities of false

alarm error & and signal skip error ' [6, 7]. By definition [6, 7] we can write

& �

�

� � � � �P H H P L h H P L h H[ | ] [ ( ) | ] [ | ]1 0 0 0sup ,

' �

�

� � � � �P H H P L h H P L h H[ | ] [ ( ) | ] [ | ]0 1 1 1sup ,

where P H Hi j[ | ], i j, ,�0 1, designates the probability of decision-making about the truth of hypothesis Hi,

while hypothesis H j is true. Thus, the determination of & and ' involves the need of finding the probabilities

of the LRF logarithm (2) maximum exceeding and not exceeding the threshold h, respectively. To this end, it

is necessary to have the distribution law of random quantity L L� sup
�

�( ) for both hypotheses H i , i �0 1, .

In accordance with [6–8], at� s ( � and�
�

( � distributions of Y s1 ( )� , Y s2 ( )� and LRF logarithm (1)

at fixed unknown parameter� are reduced to the Gaussian distribution. Nevertheless, the LRF logarithm (2)

contains a logarithmic term of functions of the observed data; hence, the direct extension of results from

papers [6–8] to the case under consideration may prove to be incorrect.

Let us consider statistical properties of this term on the assumption that the minimum area of image� min

is so large that

� s ��1, �
�

��1. (3)
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Let us introduce designation

A
N

Y X

s

s s( ) ( ( ) ( ) / )
min

�

�

� �

� � �� �

2 1

0

1

2
(4)

and present this expression in the form

A m
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A
A
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A( ) ( )
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( )� �

) �
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* �� 

�

�

�
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�

�

1 ,

at mA ( )� + 0, where * �A ( ) is the centered random process with unit dispersion, mA ( )� and ) �A

2
( ) are the

mathematical expectation and dispersion of A( )� . Calculating mA ( )� and ) �A

2
( ) at the point of the true

value of area in the absence and presence of image we obtain
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, (5)

where,
� � �

� �

� S S S
s s

/ is the coefficient determining the degree of overlapping of regions occupied by

spectral densities of useful image and background, S
s�
�

is the overlapping area of these regions.

From expression (5) it follows that at � s ( � ratio ) � �A Am( ) / ( )0 0 0( for both hypotheses. More

cumbersome calculations make it possible to obtain a similar result for any � � �� [ , ]min max . Then,

assuming condition (3) is satisfied, similar to paper [7] the following approximate equality can be used:

ln ( ) ln ( )
( )

( )

( )A m
m

A
A

A

A� �

) �

�

* �-  �  �ln ( )
( )

( )

m
A

m
A

A

�

�

�

1. (6)

Substituting expression (6) into (2) with due regard for (4) we obtain
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Let us designate the mathematical expectation and dispersion of the Gaussian process X s ( )� as mXs ( )�

and ) �Xs

2
( ), respectively. Then, substituting expression X ms Xs Xs Xs( ) ( ) ( ) ( )� � ) � * ��  into (7), we

obtain

L L DG Xs( ) ( ) ( ) ( )� � � * �- 

2
,
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LG(�) is the asymptotic Gaussian (at� s ( � and�
�

( �) component of the LRF algorithm, * �Xs ( ) is the

Gaussian random process with zero average and unit dispersion D N mXs A( ) ( ) / [ ( )]� ) � � ��

2

0 .

Thus, if conditions (3) are fulfilled, LRF algorithm (2) can be approximated by a sum of Gaussian process

LG ( )� and process D Xs( ) ( )� * �

2
, the values of which obey the gamma distribution. Let us consider the first

two moments of both terms.

After the calculation of dispersion) �Xs

2
( ) and mathematical expectation mA ( )� for both hypotheses, we

obtain the following expressions for D( )� :
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Using approximation (3) we can find expressions for mathematical expectations mLG
and correlation

functions BLG
of LRF logarithm LG ( )� (7):

for hypothesis H1

.m H kLG
( | ) min( , )� � �1 0 1� � � / �� � � �min( , ) /0 2 0k ,

.B H dLG
( , | ) min( , , )� � � � �1 2 1 0 1 2 1� � � / �min( , ) min( , , ) /� � � � � �1 2 0 1 2 2 0d

. /�  �c2 1 0 2 0 0 02max( , ) max( , ) /� � � � � � ,

for hypothesis H0

m H kLG
( | ) /� � �0 0� ,
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Comparing these characteristics with characteristics of LRF logarithm (1), obtained in [3], it can be

shown that in the presence of image we have:

m H m HL LG
( | ) ( | )� �1 1- ,

B H B HL LG
( , | ) ( , | )� � � �1 2 1 1 2 1- �  �c2 1 0 2 0 0 02(max( , ) max( , ) ) /� � � � � � ,

where m HL ( | )� 1 , B HL ( , | )� �1 2 1 are the mathematical expectation and correlation function of LRF

logarithm (1) obtained at the a priori known values of as and qs.

Using the obtained expressions we shall compare the behavior of the dispersion of Gaussian component

D H B HL i L iG G
( | ) ( , | )� � �0 0 0� , i �0 1, and quantity D( )� 0 at � s ( � and � �� 0. If the received
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realization of observed data contains image, the dispersion of the Gaussian component of LRF logarithm has

the form

D H dLG
( | ) /� � �0 1 1 0� .

From expression (9) it follows that with unlimited rise of the number of degrees of freedom of the image

and background d1 ( � if the intensities of random components of image qs0 and background q
�

are

non-zero. Parameter D H s( | ) [ / ]min� � � �0 1 0

1
1 1� � (

�

at � s ( �. Hence, it follows that given

hypothesis H1 the contribution of non-Gaussian component of the LRF logarithm decreases with the rise of

the number of degrees of freedom of � s and �
�

.

A similar conclusion can be also made in the absence of image, because D H ñLG
( | )� 0 0 1� ( � at

�
�

( � and q
�

+ 0, while parameter D H( | )� 0 0 tends to a finite quantity:

D H q q qs( | ) ( )[ / ] ( )� � � ,
� � � �0 0

1
1 1 1(   2 

�

at �
�

( � and � s ( �.

That is why at qs0 0� , q
�

�0, and fulfillment of condition (3), the non-Gaussian component of LRF

logarithm can be neglected by assuming L LG( ) ( )� �- . Thus, we can find characteristics of the detection

algorithm in Gaussian approximation.

Comparing LRF logarithms LG ( )� (8) and L a qs s( , , )� (1) we may conclude that these expressions have

the same structure and differ only by their determinate terms and also coefficients of random functions

Y s1 ( )� , Y s2 ( )� , and X s ( )� . As was shown in [3], in the neighborhood of true value of parameter � 0 LRF

logarithm L a qs s( , , )� (1) can be approximated by the Gaussian Markov process. Hence, L LG( ) ( )� �- can

be also considered as Gaussian Markov process in the neighborhood of the true value of area� 0. Therefore,

the complete, in statistical sense, description of LRF logarithm L( )� involves the need of determining the

initial probability density and transition probability [8].

In the case under consideration the initial probability density will be the univariate probability density of

LRF logarithm at � �� min . Since L( )� is an asymptotically Gaussian process, if condition (3) is satisfied,

the initial probability density has the form:

W L H

H
i

L iG

( , | )

( | )
min

min

�

) � �

�

1

2

. /

exp

( | )

( | )

min

min

�

�

�

	

�




�

�

�

�

�

�

L m H

H

L i

L i

G

G

�

) �

2

2
2

, (10)

where ) � � �L i L iG G
H B H

2
( | ) ( , | )min min min� , i = 0, 1.

The calculation of the transition probability implies the need of finding the drift coefficient

M 1( )� � 3  � 4

( 

lim [ ( ) ( )]| ( ) /
5

5 5

�

� � � � �

0
1 1 1L L LG G G

and diffusion coefficient of LRF logarithm L( )�

M 2( )� � 3  � 4

( 

lim [ ( ) ( )] | ( ) /
5

5 5

�

� � � � �

0
1 1

2

1L L LG G G

in the neighborhood of the true value of area, where | |/� � �� ��0 0 1. It can be shown that if the image

intensity is non-zero, while area � 0 is so large that apart from condition (3) the following conditions are

fulfilled:

� �
� �s s s sq q q a a q��  � �max { / }, {| |},{ ( ) / [min( ,1 1 2 10 0 0 0

2

. /s N0 0) ]} � �min / 0,

then the desired coefficients have the form:
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for hypothesis H1

M H
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(11)

for hypothesis H0

M L H k1 0( | ) / min� � � ,

M L H ñ2 0 1( | ) / min� � . (12)

Solving the Fokker–Planck–Kolmogorov equations with coefficients (11) and (12) at the initial (10) and

relevant boundary conditions, similar to [7], we can find the probabilities of the false alarm and signal skip:
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where the following designations are used:

h h d1 2� / , � /z k ñN

2 2

1� ,

z k d1

2

1

2

0 1� � �/ min , h h d2 1 0� � �min / , Ñ d d
2

1 2� / ,

6( ) exp( / )y x x
y

� �

��
�

2
2 2d � is the probability integral.
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The resultant expressions make it possible to analyze the performance efficiency of the maximum

likelihood algorithm for different statistical characteristics of useful image and background, and also to

determine the degree of influence of their difference on the detection efficiency.

The signal skip probability (14) obtained at unknown �, as , and qs coincides with the signal skip

probability obtained in [3] for the unknown area and a priori known values of as and qs . Hence, we can make

a conclusion that in case condition (3) is satisfied, the lack of knowledge of mathematical expectation as and

the relative intensity of image qs does not asymptotically affect the signal skip probability. Thus, the

difference in efficiency of detecting the image with unknown parameters as and qs as compared with the

case of known as and qs is determined by the rise of the false alarm probability.

For estimating this difference we shall use the Neumann–Pearson criterion [6], which implies that

threshold h in formulas (13) and (14) is determined from the specified false alarm probability 7, i.e., it is a

solution of equation:

& 7( )h � . (15)

The numerical solution of this equation gives the value of threshold �h; substituting the latter into

expression (14) we find the value of signal skip probability ' '� ( �)h at unknown parameters as and qs . For

the case of known as and qs we substitute into formula (15) the expression for false alarm &( , , )h a qs s

obtained in [3] in place of &( )h (13).

Let �h0 be the threshold obtained by numerical solution of equation& 7( , , )h a qs s � . Then substituting �h0

into formula (14) we obtain an appropriate value of signal skip' '0 0� ( � )h for the case of known as and qs .

The relationships of the relative rise of signal skip probability' 8 '0 as a function of the true value of the

relative intensity of image qs0 at the fixed value of false alarm 7 �

�

10
3

and different values of the relative

intensity of background q
�

are presented by solid lines in Fig. 1. These curves were plotted on the

assumption that the spectral densities of image and background do not overlap so that , �0. In addition,

these relationships were plotted for the following selected parameters: � �0 05� . max, � �min max.�01 ,

a as0 �
�

, � �
�s � �200. Curves 1 and 2 were calculated at q

�

� 0.8, and curves 3 and 4 at q
�

� 0.6.

Dashed curves in Fig. 1 correspond to the false alarm probability 7 �

�

10
4

.

Figure 2 presents the relationships of the loss of ' 8 '0 as a function of background intensity q
�

at

different values of image intensity qs0 under the same conditions as above. In this case solid lines

correspond to the false alarm probability7 �

�

10
3
, while dashed ones correspond to7 �

�

10
4

. Curves 1 and 2

were calculated at qs0 � 0.8 and curves 3 and 4 at qs0 � 0.6.

The analysis of curves (Figs. 1, 2) reveals that the lack of knowledge of true values of image parameters

as and qs can lead to a significant loss in the efficiency of object detection by using its image. Moreover, if

the spectral densities of image and background occupy nonoverlapping regions on the plane of spatial

frequencies, the specified relative loss increases both with the rise of relative intensity of interfering

background q
�

and with the rise of true value of the relative intensity of useful image qs0. However, with the

reduction of the required probability of false alarm the relative loss decreases.
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Statistical simulation was conducted for the purpose of verification of the detection algorithm and

establishing the application boundaries of the obtained asymptotic analytical expressions for the detection

characteristics. The simulation was performed on the assumption that the image represents a square with

area � �0 4� min , while the range of possible values of unknown area is equal to � �max min/ �9.

Mathematical expectations and intensities of image and background were selected equal: a as � �
�

0 and

q q qs � �
�

, hence, the detection was performed at the expense of the difference of spectral characteristics of

image mad background. In this case the regions occupied by spectral densities of image and background

were selected of rectangular shape. The degree of overlapping of these regions was characterized by

coefficient , � 0.1.

Figures 3 and 4 present the relationships of the false alarm probability&( )h (Fig. 3) and correct detection

D h h( ) ( )� �1 ' (Fig. 4) as a function of threshold h at � � �
�s � � �10

3
. Solid lines show the relationships

calculated by using formulas (13) and (14), while diamonds designate the simulation results for appropriate

parameters. Curves 1, 2, and 3 were calculated at q � 0.1, 0.2, 0.3, respectively. Figure 3 indicates

satisfactory agreement of the calculation results by formula (13) and the simulation results.

Correspondingly, Fig. 4 shows that the signal skip probability (14) (or correct detection) obtained for the

case of known parameters as and qs satisfactorily describes the synthesized maximum likelihood algorithm

at unknown parameters as , qs and � ��1.

Thus, a structure of the maximum likelihood algorithm for detection of stochastic image with unknown

area, mathematical expectation, and intensity was obtained. The algorithm characteristics were found. It was

shown that at sufficiently large values of the number of degrees of freedom for image and background the

lack of knowledge of the intensity and mathematical expectation of image mostly affects the probability of

false alarm errors, while the signal skip probabilities are asymptotically equal both with the known and

unknown parameters of image. The statistical simulation of the detection algorithm was conducted for

performance verification of the algorithm and corroboration of the results obtained.
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