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Radiophysics and Quantum Electronics, Vol. 57, No. 4, September, 2014
(Russian Original Vol. 57, No. 4, April, 2014)

QUASIOPTIMAL ESTIMATION OF MOTION PARAMETERS BASED
ON LASER RANGING

A.P.Trifonov∗ and A.V.Kurbatov UDC 621.391

An algorithm for estimation of range, velocity, and acceleration based on measurements of range
in each repetition period of the probing sequence of optical pulses is synthesized. Characteristics of
estimates with allowance for abnormal errors are found. It is shown that the proposed estimates
are consistent, asymptotic (the signal-to-noise ratio increases for each pulse), unbiased, and
effective.

1. INTRODUCTION

In many problems of optical detection and ranging [1–5], besides the range to a target, estimation of
its radial velocity and radial acceleration is also of interest. Sequences of optical pulses are widely used to
determine the target motion parameters. This makes it topical to study the accuracy of the methods based
on their use.

Estimation of the maximum likelihood of the target range, velocity, and acceleration by the probing
sequence of optical pulses were discussed earlier in [3, 4], where potential characteristics of the estimates of
range, velocity, and acceleration were found. However, the hardware implementation of maximum-likelihood
algorithms for estimation of all three motion parameters encounters significant difficulties. The procedure
for estimation of range, velocity, and acceleration can be simplified by a quasioptimal algorithm. This
algorithm is based on determining the range, velocity, and acceleration of a target from the results of laser
measurements of range in each repetition period of the sequence of optical pulses.

2. CHARACTERISTICS OF THE MAXIMUM-LIKELIHOOD ESTIMATES OF MOTION
PARAMETERS

The intensity of the probing sequence of optical pulses can be written according to [3–5] in the form

sN(t) =

N−1∑

k=0

ŝ[t− (k − μ) θ − λ], (1)

where the function ŝ(t) describes the intensity of an individual pulse, λ is the temporal position of the
sequence, and θ is the pulse repetition period. The parameter μ determines the sequence point with which
the temporal position λ of the sequence is related. For example, the quantity λ is the arrival time of the
first pulse for μ = 0, the arrival time of the middle of sequence (1) for μ = (N − 1)/2, and the arrival time
of the last pulse of the sequence for μ = N − 1.
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Assume that the probing sequence (1) is scattered by a target with range R0, velocity V0, and accelera-
tion A0, and the possible values of the vector (R,V,A) lie in the a priori region
W =

{
[Rmin, Rmax], [Vmin, Vmax], [Amin, Amax]

}
, where |Vmax| � c, Nθ |Amax| � c, and c is the speed of

light. Then, following [1–5], the received-signal intensity can be written in the form

sN (t, R0, V0, A0) =

N−1∑

k=0

s
[
t− 2R0/c− (k − μ) (1 + 2V0/c) θ −A0(k − μ)2 θ2/c

]
. (2)

Here, the function s(t) describes the temporal profile of the intensity of one received optical pulse of the
sequence and can generally differ from ŝ(t) in the sum given by Eq. (1). In Eq. (2) and below, the zero
index denotes the true (unknown) values of the parameters R, V , or A of the received sequence.

Assume that a signal with intensity (2) is observed in the time interval [0, T ] against the background
of optical noise that is a stationary Poisson process with the intensity ν > 0. In this case, the signal π(t) that
is accessible for processing is a Poisson process with the intensity β(t, R, V,A) = sN(t, R, V,A)+ν, where the
values of the parameters R, V , and A are subject to estimation. To estimate the target motion parameters
R0, V0, and A0 with the maximum likelihood, a logarithm of the likelihood function (log-likelihood) should
be formed according to [3]:

L(R,V,A) =

T∫

0

ln
[
1 + sN (t, R, V,A)/ν

]
dπ(t)−

T∫

0

sN (t, R, V,A) dt. (3)

As an estimate with the maximum likelihood, we take the value of the vector (R̃, Ṽ , Ã) from the
region W, which corresponds to the largest maximum of the log-likelihood (3):

(R̃, Ṽ , Ã) ∈ W : L(R̃, Ṽ , Ã) = supL(R,V,A). (4)

Unconditional characteristics of estimates (4) were found in [3, 4] assuming that the values of R0, V0,
and A0 are uniformly distributed in the region W. For the unconditional biases, we obtained the expressions

b(R̃) = 〈R̃−R0〉 = 0, b(Ṽ ) = 〈Ṽ − V0〉 = 0, b(Ã) = 〈Ã−A0〉 = 0 (5)

and for the conditional biases we obtained

B(R̃) = 〈(R̃−R0)
2〉 = P0D0(R̃) + (1− P0)ΔR2

pr/6,

B(Ṽ ) = 〈(Ṽ − V0)
2〉 = P0D0(Ṽ ) + (1− P0)ΔV 2

pr/6,

B(Ã) = 〈(Ã−A0)
2〉 = P0D0(Ã) + (1− P0)ΔA2

pr/6, (6)

where
ΔRpr = Rmax −Rmin, ΔVpr = Vmax − Vmin, ΔApr = Amax −Amin.

In Eqs. (5) and (6), the averaging (denoted by angle brackets) is performed over realizations of the Poisson
process π(t) and over the true values of estimated parameters R0, V0, and A0, while the averaging of D0(R̃),
D0(Ṽ ), and D0(Ã) is performed over the variance of reliable estimates (4), according to [6, 7], i. e., in the
absence of abnormal errors. These variances coincide with those of the mutually effective estimates and are
determined by the expressions from [3]

D0(R̃) =
c2

4α

M2M4 −M2
3

(2M1M3 +M0M4)M2 −M3
2 −M0M2

3 −M2
1M4

,

D0(Ṽ ) =
c2

4ϑ2α

M0M4 −M2
2

(2M1M3 +M0M4)M2 −M3
2 −M0M2

3 −M2
1M4

,
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D0(Ã) =
c2

ϑ4α

M0M2 −M2
1

(2M1M3 +M0M4)M2 −M3
2 −M0M2

3 −M2
1M4

, (7)

where

α =

T∫

0

1

ν + s(t)

[
ds(t)

dt

]2
dt, Mn =

N−1∑

k=0

(k − μ)n. (8)

The quantity P0 in Eqs. (6) is the reliable-estimates probability taken from [4, 6]:

P0 =
1√

2π (1 + κ2)

∞∫

√
2

exp

[
− (x− η)2

2 (1 + κ2)
− ξx2

(2π)2
exp
(
−x2

2

)]
dx,

where

ξ =
Qθ3

σ3
N c3

N (N2 − 1)

12

√
N (N2 − 4)

15

[
1

ν

T∫

0

(
ds(t)/dt

1 + s(t)/ν

)2

dt

]3/2
,

κ2 =

T∫

0

ln2
[
1 + s(t)/ν

]
s(t)/ν dt

/ T∫

0

ln2
[
1 + s(t)/ν

]
dt,

η =
√
N

T∫

0

ln
[
1 + s(t)/ν

]
s(t)/dt

/
√√√√√ν

T∫

0

ln2
[
1 + s(t)/ν

]
dt,

σ2
N = ν

T∫

0

ln2
[
1 + s(t)/ν

]
dt,

and Q = (Rmax − Rmin) (Vmax − Vmin) (Amax − Amin) is the Eucleadian volume of the a priori region W
of possible values of unknown parameters. The quantity ξ has the meaning of the reduced volume, taken
from [7], of the a priori region of possible values of unknown range, velocity, and acceleration, which
determines the number of discernible values of range, velocity, and acceleration (4) in the region W.

The signal-to-noise ratio (SNR) for the receiver with the maximum likelihood (3), according to [4,
6], has the form

z2N =
N

ν

⎡

⎣
+∞∫

−∞
ln[1 + s(t)/ν]s(t) dt

⎤

⎦
2/ +∞∫

−∞
ln2[1 + s(t)/ν] [1 + s(t)/ν] dt. (9)

The estimate of the maximum likelihood (4) for a large signal-to-noise ratio (9) is asymptotically
effective, as well as unbiased and consistent.

Hardware implementation of estimate (4) is quite difficult since, as a rule, for the creation of a gauge
with the maximum likelihood, one has to use a multichannel (velocity and acceleration) circuit. In this
case, the gauge contains parallel channels, and each channel generates an algorithm for the log-likelihoods
in one of some set of points in the a priori region of possible values of the velocity and acceleration. Each
channel of the gauge contains a matched filter for one pulse and a perfect comb filter. Howerer, the technical
implementation of a comb filter for a large number of pulses and a large a priori variation range of the velocity
and acceleration is difficult because of the rigid requirements to stability of the delay-line parameters and
high accuracy of location of taps for provision of synchronous accumulation of pulses.
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3. ESTIMATES OF THE TEMPORAL POSITION OF A PULSE

In order to simplify the implementation of an optical device for measurement of range, velocity, and
acceleration, we consider the possibility of determining them by the results of laser measurements of the
range Rk in each repetition period of the optical-pulse sequence. Let us introduce the designations

λk = 2R/c+ (k − μ) (1 + 2V/c) θ +A (k − μ)2 θ2/c,

λ0k = 2R0/c+ (k − μ) (1 + 2V0/c) θ +A0 (k − μ)2 θ2/c. (10)

Here, the variables λk and λ0k have the meaning of temporal positions of the kth pulse. In designations (10),
the received-signal intensity (2) can be written as

sN (t, R0, V0, A0) =

N−1∑

k=0

s(t− λ0k).

Here, the temporal position λk of the kth pulse, which determines the target range Rk = cλk/2 in
each repetition period [tk, tk+1], takes the values from the a priori interval

Λk = [Λkmin,Λkmax], (11)

Λkmin =

{
2Rmin/c+ (k − μ) (1 + 2Vmin/c) θ +Amin (k − μ)2 θ2/c, k > μ;

2Rmin/c+ (k − μ) (1 + 2Vmax/c) θ +Amin (k − μ)2 θ2/c, k ≤ μ,

Λkmax =

{
2Rmax/c+ (k − μ) (1 + 2Vmax/c) θ +Amax (k − μ)2 θ2/c, k > μ;

2Rmax/c+ (k − μ) (1 + 2Vmin/c) θ +Amax (k − μ)2 θ2/c, k ≤ μ.

The boundaries Λkmin and Λkmax are determined differently depending on the ratio between the parameters
k and μ. The middles Λprk = (Λkmin + Λkmax)/2 of the intervals Λk can be found from the formulas

Λprk = 2Rpr/c+ (k − μ) (1 + 2Vpr/c) θ +Apr (k − μ)2 θ2/c,

where

Rpr =
Rmax +Rmin

2
, Vpr =

Vmax + Vmin

2
, Apr =

Amax +Amin

2
.

With allowance for definitions (10), the estimates of range, velocity, and acceleration can be formed
from the estimates λ̂k of the parameters λ0k. We will seek the estimates λ̂k of the arrival times λ0k of
the sequence pulses separately in each repetition period by the maximum likelihood technique. Consider a
log-likelihood for one pulse

Lk(λk) =

tk+1∫

tk

ln
[
1 + s(t− λk)/ν

]
dπ(t)−

tk+1∫

tk

s(t− λk) dt. (12)

As the estimate λ̂k we take the point of the greatest maximum of the log-likelihood (12)

λ̂k : Lk(λ̂k) = supLk(λk), λk ∈ Λk. (13)

In order to calculate statistical characteristics of the estimate λ̂k of the parameter λ0k, we represent
logarithm (12) as the sum of the signal and noise functions according to [6]:

Lk(λk) = Sk(λ0k, λk) +Nk(λk) + C. (14)
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The signal function is determined from the relation

Sk(λ0k, λk) = 〈Lk(λk)〉 − C,

where the angle brackets denote the conditional (for a fixed λ0k) mathematical expectation assuming that
the received signal π(t) is a Poisson process with the intensity βk(t) = s(t− λk) + ν and corresponds to the
true value λ0k of the parameter λk. The quantity C is determined by the expression

C = ν

tk+1∫

tk

ln
[
1 + s(t− λk)/ν

]
dt−

tk+1∫

tk

s(t− λk) dt. (15)

Since the parameter λk is independent of the signal energy, the quantity C is independent of the estimated
parameter λk. Moreover, since the pulse energy is independent of the pulse number k, the quantity C is
independent of the number k. Thus, for the signal function we have a representation

Sk(λ0k, λk) =

tk+1∫

tk

ln
[
1 + s(t− λk)/ν

]
s(t− λ0k) dt. (16)

Let us introduce the following designation for the maximum of the signal function:

mS = Sk(λ0k, λ0k) =

tk+1∫

tk

ln
[
1 + s(t)/ν

]
s(t) dt. (17)

The point at which the signal function (16) reaches the greatest maximum is the true value λ0k of the
parameter λk, such that Sk(λ0k, λ0k) = supSk(λ0k, λk) according to [6]. We define the noise function by
the expression Nk(λk) = Lk(λk)− 〈Lk(λk)〉. The mathematical expectation of the noise function is equal to
zero, and the correlation function for arbitrary positions λ1k and λ2k ∈ Λk has the form

KN (λ1k, λ2k) = 〈Nk(λ1k)Nk(λ2k)〉

= ν

tk+1∫

tk

ln[1 + s(t− λ1k)/ν] ln[1 + s(t− λ2k)/ν]
[
1 + s(t− λ0k)/ν

]
dt, (18)

where λ1k = 2R1/c+(k−μ) (1+2V1/c) θ+A1 (k−μ)2 θ2/c, λ2k = 2R2/c+(k−μ) (1+2V2/c) θ+A2 (k−μ)2 θ2/c.
We now write an expression for the noise-function variance at the maximum λ0k of the signal function:

σ2
SN = KN (λ0k, λ0k) = ν

tk+1∫

tk

ln2[1 + s(t)/ν] [1 + s(t)/ν] dt. (19)

From Eqs. (17) and (19) it follows that the signal-to-noise ratio in the case of reception of one pulse of the
sequence (2), according to [6], has the form

z21 =
m2

S

σ2
SN

=
1

ν

[ +∞∫

−∞
ln
[
1 + s(t)/ν

]
s(t) dt

]2/ +∞∫

−∞
ln2[1 + s(t)/ν] [1 + s(t)/ν] dt. (20)

We now determine the duration Δλ of signal functions (16) by the relation Sk(λ0k, λ0k ±Δλ) ≈ 0.
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The durations Δλ of signal functions are independent of the number k since it is assumed that the shapes
of all pulses are identical in one sequence. We designate by ΛkS = [λ0k −Δλ;λ0k +Δλ] the subrange of a
priori range (11), in which the central peak of signal function (16) is significantly different from zero, and
by ΛkN we designate the completion of the interval ΛkS to Λk. We call the interval ΛkS a signal region and
ΛkN , a noise region. By definition, the signal function Sk(λ0k, λk) ≈ 0 for λk ∈ ΛkN .

Consider at first the case where the estimate λ̂k enters the signal region ΛkS . Such an estimate is
called reliable according to [6].

The characteristics of a reliable estimate can be found from the solution of the likelihood equation
given in [6]. We will solve this equation by the method [6] of a small parameter, as which we use the quantity
ε = 1/z1, which is inverse of the signal-to-noise ratio (20). Confining ourselves to the first approximation,
we find the mathematical expectation of a reliable estimate

m0k(λ̂k | R0, V0, A0) = 〈λ̂k〉 = λ0k = 2R0/c+ (k − μ) (1 + 2V0/c) θ +A0 (k − μ)2 θ2/c (21)

and its variance according to [8]:
σ2
0 =

〈
(λ̂k − λ0k)

2
〉
= 1/α. (22)

Here, α was determined by Eq. (8). If, besides the requirement

z1 
 1,

the condition from [9] is fulfilled,
+∞∫

−∞
s(t) dt+ ντ 
 1, (23)

then the reliable estimate is roughly a Gaussian random value. In inequality (23), by τ we designate the
duration of one optical pulse with intensity s(t).

If the signal-to-noise ratio (20) is not too large and for the interval of possible values of the temporal
positions λk the inequality

ΔΛprk/Δλ 
 1, (24)

where
ΔΛprk = Λkmax − Λkmin = 2ΔRpr/c+ 2ΔVpr |k − μ| θ/c+ΔApr (k − μ)2 θ2/c, (25)

is fulfilled, then, according to [6], abnormal errors may appear [6]. To determine the impact of abnormal
errors, it is necessary to find, following [6], the reliable-estimate probability

P0λk = P [λ̂k ∈ Λk S ]. (26)

The approximate reliable-estimate probability P0λk can be found when the Gaussian approximation
of the decision statistics (12) is acceptable. In the signal region ΛkS, the distribution of the log-likelihood is
roughly Gaussian if condition (23) is fulfilled. In the noise region ΛkN , the distribution of the log-likelihood
can be approximated by a Gaussian one if, along with inequality (23), the condition from [9] is fulfilled:

ντ 
 1. (27)

Obviously, if relation (27) is fullfilled, then inequality (23) is always fulfilled.

By virtue of definition (13) for the estimate of the position λ̂k with the maximum likelihood, the
probability (26) of a reliable estimate can be represented as

P0λk = P (HS > HN ), (28)

292



where
HS = sup

λk∈ΛkS

Lk(λk), HN = sup
λk∈ΛkN

Lk(λk).

If condition (24) is fulfilled, then the random quantities HS and HN are roughly statistically inde-
pendent according to [6]. Therefore, Eq. (28) takes the form

P0λk =

+∞∫

−∞
FN (H) dFS(H), (29)

where FN (H) and FS(H) are the distribution functions of the random quantities HN and HS, respectively.
Let us find the distribution function FS(H). Since the subintervals ΛkS roughly coincide with the

region of high correlation of random process (14), then for a sufficiently large signal-to-noise ratio (20), the
approximation

Lk(λ̂k) ≈ mS +Nk(λ0k). (30)

is valid. Hereafter, insignificant constant (15) is omitted. Since the random quantity HS is roughly Gaussian
with mathematical expectation (17) and variance (19), then it can be written that

FS(H) = Φ
[
(H −mS)/σSN

]
, (31)

where Φ(x) = (2π)−1/2
∫ x
−∞ exp(−t2/2) dt is the probability integral.

In the region of abnormal errors ΛkN , the decision statistics Lk(λk) has also a roughly Gaussian
distribution. The correlation function of the noise function in the noise region is somewhat different from
expression (18). Namely, for the positions λ1k, λ2k ∈ ΛkN the function

KN (λ2k, λ1k) = ν

tk+1∫

tk

ln[1 + s(t− λ1k)/ν] ln[1 + s(t− λ2k)/ν] dt,

so that in the noise region the log-likelihood is a stationary random process with the variance

σ2
N = KN (λk, λk) = ν

tk+1∫

tk

ln2[1 + s(t)/ν] dt.

Approximation for the distribution function of the greatest maximum of the noise component HN

with the inequality (24) fulfilled and for a large ratio H/σN , according to [6], has the form

FN (H) =

⎧
⎪⎨

⎪⎩
exp

[
− ξk

2π
exp
(
− H2

2σ2
N

)]
, H ≥ 0,

0, H < 0.

(32)

Here, the variable

ξk = ΔΛprk

√
1

σ2
N

∂2KN (λ1k, λ2k)

∂λ1k ∂λ2k

∣∣∣
λ1k=λ2k

=
ΔΛprk

ν

√√√√√
+∞∫

−∞

[
ds/dt(t)

]2
[
1 + s(t)/ν

]2 dt
/√√√√√

+∞∫

−∞
ln2
[
1 + s(t)/ν

]
dt,

and the parameter ΔΛprk was determined by Eq. (25). The quantities ξk have the meaning of the reduced
lengths taken from [7] for a priori intervals of possible values of the temporal positions of the pulses and
determine the number of discernible values of the temporal positions in the interval Λk.
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Substituting expressions (31) and (32) into Eq. (29), we obtain an approximate reliable-estimate
probability according to [8]

P0λk =
1√

2π (1 + κ21)

∞∫

0

exp

[
− (x− η1)

2

2 (1 + κ21)
− ξk

2π
exp
(
−x2

2

)]
dx. (33)

Here, the coefficients

κ21 =

+∞∫

−∞
ln2
[
1 + s(t)/ν

]
s(t)/ν dt

/ +∞∫

−∞
ln2
[
1 + s(t)/ν

]
dt,

η1 =

+∞∫

−∞
ln
[
1 + s(t)/ν

]
s(t) dt

/√√√√√ν

+∞∫

−∞
ln2[1 + s(t)/ν] dt.

The accuracy of Eq. (33) increases with increasing variables ξk and signal-to-noise ratio (20).

For the possible presence of abnormal errors, estimates (13) are statistically independent random
quantities with the probability density from [6]

Wk(λ̂k) = P0λkW0(λ̂k) + PaλkWa(λ̂k). (34)

Here, W0(λ̂k) is the Gaussian probability density of the reliable estimate λ̂k, which has momenta (21)
and (22). By virtue of the stationarity of logarithm (12) in the noise region, the probability density Wa(λ̂k)
of an abnormal error is constant in the a priori interval (11) according to [6]. Therefore, the first two
conditional (with respect to R0, V0, and A0) momenta of estimate (13) are determined by the expressions

mk = mk(λ̂k | R0, V0, A0) = 〈λ̂k〉 = P0λkλ0k + (1− P0λk)Λprk

= P0λk

[
2R0/c+ (k − μ) (1 + 2V0/c) θ +A0 (k − μ)2 θ2/c

]

+ (1− P0λk)
[
2Rpr/c+ (k − μ) (1 + 2Vpr/c) θ +Apr (k − μ)2 θ2/c

]
, (35)

σ2
k = σ2

k(λ̂k | R0, V0, A0) =
〈
(λ̂k − 〈λ̂k〉)2

〉

=
P0λk

α
+

1− P0λk

12
ΔΛ2

prk + P0λk (1− P0λk) (Λprk − λ0k)
2

=
P0λk

α
+

1− P0λk

12c2
[
2ΔRpr + 2ΔVpr |k − μ| θ +ΔApr (k − μ)2 θ2

]2

+
P0λk (1− P0λk)

c2
[
2 (Rpr −R0) + 2 (Vpr − V0) (k − μ) θ + (Apr −A0) (k − μ)2 θ2

]2
. (36)

Correspondingly, the conditional bias and conditional spread of estimate (13) can be written as

bk = bk(λ̂k | R0, V0, A0) = 〈λ̂k − λ0k〉 = (1− P0λk) (Λprk − λ0k)

= 2 (Rpr −R0)/c+ 2 (k − μ) (Vpr − V0) θ/c+ (Apr −A0) (k − μ)2 θ2/c,

Bk = Bk(λ̂k | R0, V0, A0) =
〈
(λ̂k − λ0k)

2
〉
=

P0λk

α
+ (1− P0λk)

[
ΔΛ2

prk

12
+
(
Λprk − λ0k

)2
]

=
P0λk

α
+

1− P0λk

c2

{
1

12

[
2ΔRpr c+ 2ΔVpr |k − μ| θ +ΔApr (k − μ)2 θ2

]2

+
[
2 (Rpr −R0) + 2 (Vpr − V0) (k − μ) θ + (Apr −A0) (k − μ)2 θ2

]2
}
.
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4. QUASIOPTIMAL ESTIMATES OF MOTION PARAMETERS

Consider the possibility of using estimates (13) with the maximum likelihood to obtain the estimates
of range, velocity, and acceleration. It is seen from Eq. (34) that the distribution of estimates (13) in the
presence of abnormal errors is non-Gaussian. Due to the relatively complex shape of this non-Gaussian
distribution, the synthesis of a quasioptimal estimate is difficult. Therefore, when seeking the quasioptimal
estimate we will confine ourselves to the Gaussian approximation of the distribution of estimates (13), which
is valid for the values P0λk that are close to unity. Then for the conditional probability density of random
quantity (13) in the case of a reliable estimate, one can write an approximate formula

Wk(λ̂k | R,V,A) =
1

σ0
√
2π

exp

{
− [λ̂k −m0k(λ̂k | R,V,A)]2

2σ2
0

}
, (37)

where the mathematical expectation m0k(R,V,A) was determined by expression (21), and variance σ2
0 , by

equality (22).

We will use a set of N independent random quantities (13) as initial statistics for obtaining quasiop-
timal estimates of the range R̂, velocity V̂ , and acceleration Â. The corresponding likelihood function has
the form

W (λ̂0, . . . , λ̂N−1 | R,V,A) =

N−1∏

k=0

Wk(λ̂k | R,V,A). (38)

Substituting formula (37) into equality (38) and omitting insignificant terms, for the log-likelihood function
we obtain the expression

lnW (λ̂0, . . . , λ̂N−1 | R,V,A) = − 1

2σ2
0

N−1∑

k=0

[
λ̂k − 2R/c− (k − μ) (1 + 2V/c) θ −A (k − μ)2 θ2/c

]2
. (39)

According to the maximum-likelihood technique, as the estimates R̂, V̂ , and Â one should take the
values for which the function (39) is the maximum. As is well known, the conditions

∂ lnW

∂R
= 0,

∂ lnW

∂V
= 0,

∂ lnW

∂A
= 0

should be fulfilled at the maximum. In detailed form, these equations are given by

1

c

⎛

⎝
4M0 4θM1 2θ2M2

4θM1 4θ2M2 2θ3M3

2θ2M2 2θ3M3 θ4M4

⎞

⎠

⎛

⎝
R̂

V̂

Â

⎞

⎠ =

⎛

⎝
2M̂0 − 2θM1

2θM̂1 − 2θ2M2

θ2M̂2 − θ3M3

⎞

⎠ , (40)

where the coefficients Mn are defined by formula (8), and the quantities

M̂n =

N−1∑

k=0

[
(k − μ)n λ̂k

]
.

Solving Eq. (40), we obtain the vector

⎛

⎝
R̂

V̂

Â

⎞

⎠ =
N−1∑

k=0

⎛

⎝
δRk

δV k

δAk

⎞

⎠ λ̂k −
⎛

⎝
0
c/2
0

⎞

⎠ , (41)
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where the elements

δRk =
c
[
(M2M4 −M2

3 ) + (k − μ) (M2M3 −M1M4) + (k − μ)2 (M1M3 −M2
2 )
]

2
[
(2M1M3 +M0M4)M2 −M3

2 −M0M2
3 −M2

1M4

] ,

δV k =
c
[
(M2M3 −M1M4) + (k − μ) (M0M4 −M2

2 ) + (k − μ)2 (M1M2 −M0M3)
]

2θ
[
(2M1M3 +M0M4)M2 −M3

2 −M0M2
3 −M2

1M4

] ,

δAk =
c
[
(M1M3 −M2

2 ) + (k − μ) (M1M2 −M0M3) + (k − μ)2 (M0M2 −M2
1 )
]

θ2
[
(2M1M3 +M0M4)M2 −M3

2 −M0M2
3 −M2

1M4

] .

The elements δRk, δV k, and δAk depend only on the number k and the quantity μ, and it is therefore sufficient
to calculate them one time.

Since the estimates (41) were obtained on the basis

Fig. 1. Block diagram of a quasioptimal gauge.

of information only about the estimates λ̂k, but not full
information about the received sample, these estimates
are not the maximum-likelihood estimates.

The described quasioptimal algorithm can be im-
plemented using the block diagram shown in Fig. 1. A
flow of short pulses, which is the derivative of the realiza-
tion of the Poisson random process π′(t), is fed to the re-
ceiver input. The pulse flow passes through the filter (unit
1) with the impulse response h(t) = a ln

[
1 + s(t∗ − t)/ν

]
,

where a is the filter gain and t∗ is the delay, which should be t∗ > τ if inequality (23) is fulfilled. After the
filter, the signal is multiplied by the function

χk(t) =

{
1, t ∈ Λk,

0, t /∈ Λk.

successively for all numbers k = 0, . . . , N − 1. Unit 2 (extremator) determines the temporal position of the
greatest maximum of the signal fed to the input and generates a sequence of estimates λ̂k. Unit 3 is the
computing device that calculates the estimates of range, velocity, and acceleration using Eq. (41).

Let us find the characteristics of quasioptimal estimates (41). In order to obtain mathematical
expectations of estimates (41), it is needed that instead of the estimates λ̂k, their mathematical expectations
be substituted into them. As a result, we obtain

⎛

⎝
〈R̂ | R0, V0, A0〉
〈V̂ | R0, V0, A0〉
〈Â | R0, V0, A0〉

⎞

⎠ =

N−1∑

k=0

⎛

⎝
δRk

δV k

δAk

⎞

⎠ 〈λ̂k〉 −
⎛

⎝
0
c/2
0

⎞

⎠ . (42)

Subtracting from Eq. (42) the identity

⎛

⎝
R0

V0

A0

⎞

⎠ =

N−1∑

k=0

⎛

⎝
δRk

δV k

δAk

⎞

⎠λ0k −
⎛

⎝
0
c/2
0

⎞

⎠

and using Eq. (35), we obtain an expression for the conditional biases of quasioptimal estimates:

b(l̂ | R0, V0, A0) =
2

c
ϕl0 (Rpr −R0) +

2θ

c
ϕl1 (Vpr − V0) +

θ2

c
ϕl2 (Apr −A0). (43)
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Here, l is one of the motion parameters to estimate, namely, R, V , or A, the coefficients

ϕlm =
N−1∑

k=0

δlkPaλk (k − μ)m, m = 0, 1, 2, (44)

and Paλk = 1− P0λk is the abnormal-error probability [6].

According to Eq. (43), quasioptimal estimates (41) in the presence of abnormal estimates are condi-
tionally biased. Using the non-dependence of random quantities (13), from equalities (36), (41), and (43)
we obtain an expression for the conditional spread of quasioptimal estimates:

B(l̂ | R0, V0, A0) =

N−1∑

k=0

δ2lkσ
2
k(λ̂k | R0, V0, A0) + b2(l̂ | R0, V0, A0).

Substituting expressions (36) and (43) into this formula, we obtain

B(l̂ | R0, V0, A0) =
1

α

N−1∑

k=0

δ2lkP0λk +
1

c2

[ 1
12

(
4χl0 ΔR2

pr + 4θ2χl2ΔV 2
pr + θ4χl4 ΔA2

pr

+ 8θχl1ΔRprΔVpr + 4θ2χl2ΔRprΔApr + 4θ3χl3ΔVprΔApr

)

+ 4 (ψl0 + ϕ2
l0) (Rpr −R0)

2 + 4θ2 (ψl2 + ϕ2
l1) (Vpr − V0)

2 + θ4 (ψl4 + ϕ2
l2) (Apr −A0)

2

+ 8θ (ψl1 + ϕl0ϕl1) (Rpr −R0) (Vpr − V0) + 4θ3 (ψl2 + ϕl0ϕl2) (Rpr −R0) (Apr −A0)

+ 4θ3 (ψl3 + ϕl1ϕl2) (Vpr − V0) (Apr −A0)
]
, (45)

where

χlm =

N−1∑

k=0

δ2lk Paλk |k − μ|m, ψlm =

N−1∑

k=0

δ2lk P0λkPaλk (k − μ)m, (46)

and the coefficients ϕlm are defined by expression (44).

As the signal-to-noise ratio (20) increases for one pulse of sequence (2), the reliable-error probability
of the temporal position of optical pulse (33) also increases, i. e., P0λk → 1, and Paλk → 0 for z1 → ∞.
Accordingly, from Eqs. (43) and (45) we have

b(R̂ | R0, V0, A0) → 0, b(V̂ | R0, V0, A0) → 0, b(Â | R0, V0, A0) → 0 (47)

and

B(l̂ | R0, V0, A0) → 1

α

N−1∑

k=0

δ2lk. (48)

Performing the summation, for a large signal-to-noise ratio (20) we obtain

B(R̂ | R0, V0, A0) = D0(R̃), B(V̂ | R0, V0, A0) = D0(Ṽ ), B(Â | R0, V0, A0) = D0(Ã). (49)

Here, the quantities D0(R̃), D0(Ṽ ), and D0(Ã) are defined by expressions (7) and represent the variances of
the mutually effective estimates of the motion parameters. Consequently, quasioptimal estimates (41) are
asymptotically (with increasing signal-to-noise ratio (20)) conditionally unbiased according to limits (47)
and are mutually effective according to the limit (49).

We then find the unconditional characteristics of quasioptimal estimates (41). We assume that the
true values of R0, V0, and A0 are uniformly distributed in the a priori region W. Averaging expression (43)
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over the uniformly distributed values of R0, V0, and A0, for the unconditional biases we obtain

b(R̂) = 〈B(R̂ | R0, V0, A0)〉 = 0, b(V̂ ) = 〈B(V̂ | R0, V0, A0)〉 = 0,

b(Â) = 〈B(Â | R0, V0, A0)〉 = 0.

Consequently, quasioptimal estimates (41) are unconditionally unbiased.

We now turn to finding the unconditional spreads. Averaging expression (45) over uniformly dis-
tributed values of R0, V0, and A0, for the unconditional spreads of quasioptimal estimates (41) we find

B(l̂) =
1

α

N−1∑

k=0

δ2lk P0λk +
1

12c2

[
4 (χl0 + ϕl0 + ψ2

l0)ΔR2
pr + 4θ2 (χl2 + ϕl2 + ψ2

l2)ΔV 2
pr

+ θ4 (χl4 + ϕl4 + ψ2
l4)ΔA2

pr + 8θχl1ΔRprΔVpr + 4θ2χprΔRprΔApr + 4θ3χl3ΔVprApr

]
. (50)

Comparing expressions (6) and (50), one can find the losses in accuracy of quasioptimal estimates (41)
compared with the accuracy of the maximum-likelihood estimates (4).

With increasing signal-to-noise ratio (20), the reliable-estimate probability P0λk → 1 and Paλk → 0,
see Eq. (33). Accordingly, from expression (50) we have

B(l̂) → 1

α

N−1∑

k=0

δ2lk,

which is similar to the limit (48). Consequently, as the signal-to-noise ratio (20) increases, uncondi-
tional spreads of quasioptimal estimates (41) asymptotically coincide with the unconditional spreads of
the maximum-likelihood estimates (4).

5. CONCLUSIONS

The proposed quasioptimal estimates (41), as well as the maximum-likelihood estimates (4), are
asymptotically effective with increasing signal-to-noise ratio. To make the maximum-likelihood estimates (4)
close to effective, the signal-to-noise ratio (9) should be high for the whole observed sequence of optical pulses
with intensity (2). To make the quasioptimal estimates close to effective, the signal-to-noise ratio (20)
should be high for each pulse of the observed sequence of optical pulses. Therefore, the provision of a high
a posteriori accuracy of quasioptimal estimates requires a significantly higher energy of the useful signal.

Thus, if the conditions for a high a posteriori accuracy of the estimates of temporal positions for each
pulse are fulfilled, then instead of the maximum-likelihood algorithm (4), which is difficult to implement,
one can use, actually without losses in accuracy, the quasioptimal algorithm (41), which is much easier to
implement. Moreover, algorithm (41) can be used for processing of the measurement results in the existing
high-accuracy laser range meters to obtain additional information on velocity and acceleration.
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