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Abstract—Characteristics of quasi-likelihood estimate of the arrival time of ultrawideband signal with

unknown waveform received against the background of narrow-band interferences with unknown

parameters and the Gaussian white noise have been investigated.
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In recent years the application of ultrawideband signals (UWBS) has become a new direction in the

theory of radioelectronic systems [1–3]. The UWBS spectrum is very wide; therefore its action causes

excitation of practically all possible types of natural oscillations of target under investigation that results in

highly-informative observed response. An important feature of UWBS is the absence of the carrier

frequency proper and, consequently, infeasibility of the classical description of radio signals using complex

envelope.

Paper [4] considers the estimation of the arrival time of UWBS against the background of only Gaussian

white noise (GWN). In real conditions, both a mixture of signal and white noise and other interfering actions

are applied to the receiver input. Paper [3] investigates the estimation algorithms of the arrival time of

UWBS against the background of interferences as models using the Gaussian narrow-band process (GNP)

[5]. In this case the UWBS waveform was considered to be a priori known. However, in real conditions the

waveform of received signal can be unknown, since it changes during the reflection from object

(radiolocation), during propagation in different media (navigation and communications), and the signal

waveform is always unknown in the case of monitoring.

This paper considers a task of estimating the arrival time of UWBS with unknown waveform against the

background of GNP and GWN. In this case characteristics of GNP can be also unknown.

Let us assume that the following realization is observed on time interval t T� [ , ]0 :

x t s t n t t( ) ( ) ( ) ( )� � � �0 0� � , (1)

where s t0( ) is the useful signal, the waveform of which is unknown (it is only known that this signal is

ultrawideband), � 0 is the unknown time of signal arrival, n t( ) is the realization of GWN with single-sided

spectral density N0, �(t) is the narrow-band interference.

For a model of narrow-band interference (which is the most universal) [5] we shall use narrow-band

stationary Gaussian process �( )t with zero mathematical expectation � 	 ��( )t 0 and correlation function

� � 	 �� �
�

( ) ( ) ( )t t B
 
 . Then the spectral density of GNP can be written in the form
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where �
� � �

� � �= dG G
2 2

0
( ) / max ( )

�


is the equivalent frequency band of interference, �

�0 is the central

frequency.

Since the interference is narrow-band, the following condition �
� �

�<< 0 is satisfied. Function g x
�
( )

describes the shape of interference spectral density and satisfies the following conditions:

g x
�
( ) � 0, g x g x

� �
( ) ( )� � ,

max ( ) ( )g x g x x
� �

� �

��

�



2
1d .

We shall assume that processes n t( ) and �( )t are statistically independent.

In case the waveform of signal received s t0( ) is a priori known, while GNP is not present, the estimation

of the arrival time of signal� 0 can be performed by using the maximum likelihood method [4]. To this end,

for estimate we should take the position of the largest maximum of likelihood ratio functional [4]

L
N

x t s t tF

T

( ) ( ) ( )� �� �


2

0

0

0

d . (3)

In case that the waveform of signal s t0( ) is known inaccurately, in expression (3) we shall use a certain

expected (anticipated) signal s t1( ) as a reference signal.

Thus, we obtain the following expression for the output signal of measuring device (decision making

statistic):

L
N

x t s t t

T

( ) ( ) ( )� �� �


2

0

1

0

d . (4)

For estimate �

� of the unknown time of arrival �0 we can assume the value of �, at which decision making

statistic (4) reaches its absolute (largest) maximum. The resultant estimate shall be called quasi-likelihood

[6].

Indeed, in case that received signal s t0( ) coincides with expected signal s t1( ) in the absence of GNP,

decision-making statistic (4) coincides with the logarithm of likelihood ratio functional (3).

Correspondingly, the quasi-likelihood estimate transforms into the maximum likelihood estimate.

The determination of characteristics of quasi-likelihood estimate involves the need of presenting

decision-making statistic (4) in the form of a sum of signal function S 0 0( )� �, and noise function N( )� [4]:

L S N( ) ( ) ( )� � � �� �0 0, , (5)

where

S
N

s t s t t

T

0 0

0

0 0 1

0

2
( ) ( ) ( )� � � �, d� � �


, (6)

N
N

s t n t t t

T

( ) ( )[ ( ) ( )]� � �� � �


2

0

1

0

d . (7)
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Noise function represents a realization of the Gaussian centered random process and has correlation

function

B N NN ( , ) ( ) ( )� � � �1 2 1 2� � 	 � �S B1 1 2 1 1 2( , ) ( , )� � � � , (8)

S
N

s t s t t

T

1 1 2

0

1 1 1 2

0

2
( , ) ( ) ( )� � � �� � �


d ,

B1 1 2( , )� � � � � �


4

0

2
2 1 1 1 1 2 1 2

00
N

B t t s t s t t t

TT

�
� �( ) ( ) ( )d d .

Let us assume that signal function S 0 0( , )� � (6) at fixed value� 0 reaches its largest value at point
~
� and

has only one pronounced maximum. Then the signal-to-noise ratio (SNR) at the output of quasi-likelihood

receiver can be written in the form [4]:

z S BN

2

0

2

0� (
~

) / (
~ ~

)� � � �, , . (9)

In what follows we assume that SNR is sufficiently large, so that the quasi-likelihood estimate features

high a posteriori accuracy [4]. Then quasi-likelihood estimate �

� of arrival time � 0 can be found by solving

the following equation

d

d

L( )

�

�

�
�

�

�
�

�

�
�

� 0. (10)

The approximate solution of this equation can be obtained by the method of small parameter [4]; for a

small parameter we shall use the quantity inverse to SNR (9).

Limiting our consideration with the first approximation we obtain the following expression for the bias of

quasi-likelihood estimate

b1 0 0( � )
~

� � � � �| � � � 
 . (11)

Thus, in the general case the quasi-likelihood estimate is not consistent. Its application leads to a

systematic error 
� (11) that is not dependent on SNR and is determined by the waveforms of received and

expected signals.

According to [4] the dispersion of quasi-likelihood estimate has the form

D1 0

2
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. (12)

Substituting the signal function and correlation function of the noise function into expression (12) after

differentiation we find an expression for dispersion:
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It should be noted that with a rise of SNR (9) the estimate dispersion (13) tends to zero. The estimate

accuracy can be also characterized by the value of scattering (average squared error) [4]

V b D1 0 0

2

1

2

0 1 0( � ) ( � ) ( � ) ( � )� � � �� � � � �| | |� � 	 � � . (14)

If the estimate is inconsistent (
l & 0), with a rise of SNR its scattering tends to quantity 
l
2
. For a

consistent estimate (
l � 0) the scattering of estimate with rising SNR tends to zero.

Let us consider certain particular cases of expressions (11) and (13). If GNP is not present and UWBS

waveform is a priori known, it is possible to select expected signal s t s t1 0( ) ( )� . In this case quasi-likelihood

estimate �

� transforms into maximum likelihood estimate�m . This estimate of the arrival time of UWBS with

known waveform against the background of GWN has the bias and dispersion:

b m0 0 0( | )� � � ,

D
N

s t

t
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2
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d
d . (15)

Since the maximum likelihood estimate is unbiased, its scattering coincides with dispersion

V Dm m0 0 0 0( | ) ( | )� � � �� . (16)

Comparing expressions (13) and (14) with (15) and (16) it is possible to determine losses in accuracy of

the estimate of UWBS arrival time due to a priori lack of knowledge of UWBS waveform and GNP action.

In particular, from expressions (13) and (15) it follows that the quasi-likelihood estimate has the

dispersion, which exceeds the dispersion of maximum likelihood estimate by a factor of '1, in this case

' � � � � ( �1 1 0 0 0 1

2
� �D D Rm( � ) / ( | ) / ( )| 
 , (17)

where(
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and characterizes the impact of GNP on dispersion

of quasi-likelihood estimate, while
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(18)

is the coefficient of mutual correlation between the derivative of signal received and derivative of expected

signal delayed by the value of systematic error (11) of quasi-likelihood estimate.

It is obvious that quantity (18) characterizes the impact of difference between the waveforms of received

and expected signals on the dispersion of quasi-likelihood estimate. It should be noted that a rise of estimate

dispersion (17) does not depend on the amplitudes of the received and expected signals.

For a number of tasks the estimate scattering is a more complete characteristic of accuracy as compared

with the estimate dispersion. From expression (14) and (16) it follows that the quasi-likelihood estimate has

the scattering that exceeds the scattering of maximum likelihood estimate by a factor of )1, in this case
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It now follows that the loss in accuracy of inconsistent quasi-likelihood estimate as compared with the

accuracy of maximum likelihood estimate increases with a rise of SNR. Indeed, as the power of received

signal increases and the spectral density of GWN decreases, the first term in the right-hand side of

expression (19) increases.

For a number of waveforms of received and expected signals the quasi-likelihood estimate can be

consistent. In particular, it will be consistent if the received and expected signals are even

s t s t0 0( ) ( )� � , s t s t1 2( ) ( )� � (20)

or odd

s t s t0 0( ) ( )� � � , s t s t1 1( ) ( )� � � (21)

functions of time.

In this case, the position of the largest maximum of signal function (6) coincides with the true value of the

arrival time (
~
� �= 0) and in expression (11)


� � 0. (22)

Then dispersion (13) and scattering (14) of quasi-likelihood estimate coincide, and the loss in accuracy of

quasi-likelihood estimate as compared to the accuracy of maximum likelihood estimate is characterized by

the following quantity:

) '

� �

� �

� �

� �
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01 01
1 0

0 0

1 0

0 0

1

2
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V

V

D

D Rm

( � )

( � )

( � )

( | )

|

|

|

( )0

. (23)

As a particular case we shall determine the loss in accuracy of the estimate of arrival time in the absence

of GNP. Indeed, assuming B
�
( )
 * 0, from expressions (17) and (23) we obtain

)01

2
0�

�

R ( ). (24)

If waveforms of the received and expected signals coincide, the loss in the estimate accuracy due to

impact of GNP has the form:

) (01 0� , (25)

where (
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Indeed, if the waveforms of the received and expected signals coincide, the cross-correlation coefficient

of their derivatives R( )0 1� and from expression (23) we obtain expression (25).

The calculation of determined characteristics of quasi-likelihood estimates of the arrival time of UWBS

with unknown waveform can be simpler and more convenient in case of using spectral characteristics of

signals and interference.

Let us designate the spectra of received and expected signals as follows:
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Then from expressions (15), (17) and (18) we have
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Let us consider the impact of GNP with square shape of the spectral density on the accuracy of

quasi-likelihood estimate of the time of arrival. To this end, we shall assume in expression (2) that g x
�
( ) �1

at | | /x - 1 2 and g x
�
( ) � 0 at | | /x .1 2.

Next substituting expression (2) into (27) we obtain the loss in accuracy of the estimate due to the impact

of GNP in the form:

( /i i q� �1 , (29)

where q N� �
�

/ 0 is the ratio of spectral densities of GNP and GWN, while

+ + + +/ � � � � � �
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2 2
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2

2 2
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( ) ( )
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/

j d j d

0

0

�

�

, (30)

/i is the relative fraction of the power of signal derivative S ti ( ), i � 0 1, in the frequency range, where GNP is

present.

From expression (29) it follows that the loss in accuracy of the quasi-likelihood estimate increases with a

rise of GNP frequency band and its intensity.

The Gaussian s tG( , )0 and Lorentz s tL ( , )0 monocycles [3] can serve as examples of the received and

expected UWBS, for which the quasi-likelihood estimate of arrival time will be consistent:

s t
t

f t a t tG G

d

d
( , ) ( / ) exp( / )0 0 , 0� � �1

2 2
2 , (31)

s t
t

f t a t tL L

d

d
( , ) ( / ) [ ( / ) ]0 0 , 0� � �

�

2

2 2
1 2 , (32)
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where f xG( ) and f xL ( ) are the Gaussian and Lorentz monocycles:

f x xG( ) exp( / )� �,
2

2 , (33)

f x xL ( ) [ ( / ) ]� �
�

1 2
2 1

, , (34)

ai , i �1 2, are the amplitude factors, while parameter0 characterizes the duration of signals. Signals (31) and

(32) satisfy condition (21) of the consistency of quasi-likelihood estimate of arrival time.

According to (24) the loss in accuracy of the consistent quasi-likelihood estimate caused by a priori lack

of knowledge of the UWBS waveform is determined by the value of correlation coefficient (18), (28) of

derivatives of the received and expected signals in the absence of systematic error (
� * 0).

Using these formulas for signals (31) and (32) we calculated the loss ) (24) in accuracy of

quasi-likelihood estimate for different values of duration 00 of the received signal and duration 0 of the

expected signal. Figure 1 presents the )(1) relationships of the loss in accuracy of quasi-likelihood estimate

as compared to the accuracy of maximum likelihood estimate as a function of ratio 1 0 0= / 0. Solid line in

Fig. 1 shows the loss for the case, where the received and expected signals are Gaussian monocycles (31)

with different durations. Dotted line indicates the loss in case that the received and expected signals are

Lorentz monocycles (32) with different durations.

The comparison of solid and dotted curves indicates that the application of Gaussian monocycle leads to

more significant losses caused by the duration difference of the received and expected signals than that of the

Lorentz monocycle. For both kinds of signal at 1 = 1 (durations coincide) the losses in accuracy of the

estimate are equal to zero.

Dashed line in Fig. 1 shows the loss in estimate accuracy when the Gaussian monocycle (31) with

duration 00 is received, while the expected signal is the Lorentz monocycle (32) of duration 0. Due to the

waveform difference of received and expected signals, the minimum loss exceeding unity is achieved at

1 > 1. That is why, when the interval of possible duration values of received signal is known, it is necessary

to select the duration of expected signal with exceedence of the possible duration of received signal.

Dash-and-dot line in Fig. 1 shows the loss in accuracy of quasi-likelihood estimate as compared with the

maximum likelihood estimate when the Lorentz monocycle (32) of duration 00 is received, while the

expected signal is the Gaussian monocycle (31) with duration 0. In this case, the minimum loss exceeding

unity is achieved at 1 < 1. That is why it is expedient to choose the duration of expected signal less than the

possible value of the received signal duration.

The determined characteristics of quasi-likelihood estimate make it possible to perform a sound selection

of the waveform and parameters of expected signal depending on the available a priori information and

admissible loss in accuracy of the arrival time of UWBS.
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