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ESTIMATION OF THE NUMBER OF RADIO SIGNALS WITH UNKNOWN
AMPLITUDES AND PHASES

A.P.Trifonov∗ and A.V.Kharin UDC 621.391

Some algorithms for estimating the number of radio signals with known and unknown amplitudes
and phases are synthesized and analyzed. Modified maximum-likelihood algorithms are used to
obtain consistent algorithms for estimating the number of radio signals in the case of unknown
amplitudes and phases. Efficiency of the estimation algorithms is quantitatively characterized by
the abridged probability of the signal-number estimation error. The studied-algorithm parameters
are optimized according to the analysis results.

1. INTRODUCTION

The necessity of estimating the number of received signals emerges when solving various problems of
statistical radiophysics and radioengineering. For example, when using a multipath radio channel, e.g., in
MIMO systems [1, 2], the number of radio paths is a priori unknown and should be determined. During
the radar and acoustic-location (active or passive) observation, the case where the number of sources of
the signals arriving at the antenna array is unknown is rather widespread [3–9]. However, the problem of
estimating the number of signals has not yet been completely solved. There appear difficulties in determining
the estimation-algorithm structure and the results of theoretical analysis of the operation quality of the
algorithms for estimating the number of signals are in fact absent. Moreover, the commonly accepted and
correct quantitative characterization of such algorithms has not been developed. Lack of the quantitative
characteristics of the algorithms for estimating the number of signals makes it difficult to compare the
algorithms and choose the most efficient one.

Some algorithms for estimating the number of radio signals with known and unknown amplitudes
and phases are considered below. The probability of the signal-number estimation is used as the algorithm-
efficiency characteristic.

2. RADIO SIGNALS WITH KNOWN AMPLITUDES AND PHASES

Let us assume that we observe the sum of ν narrowband radio signals si(t, ai, ϕi) =
aifi(t) cos(ωit+Ψi(t)− ϕi) and, as a result, the following signal is received:

s(t, ν,aν ,ϕν) =
ν∑

i=1

si(t, ai, ϕi) =
ν∑

i=1

aifi(t) cos(ωit+Ψi(t)− ϕi), (1)

where ν = 1, . . . , νmax, ai and ωi are the amplitude and frequency of the ith signal, respectively (ai and ωi

are the real numbers), ϕi ∈ [0, 2π] is the signal phase, Ψi(t) is the signal phase-modulation law, fi(t) is the
signal envelope, and aν = (ai, . . . , aν) and ϕν = (ϕi, . . . , ϕν) are the notations used in what follows.
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Let signal (1) be observed during the time interval [T1, T2] against the background of additive Gaus-
sian white noise n(t) with one-sided spectral density N0. Therefore, processing can be performed for the
realization

x(t) = n(t) +

ν0∑

i=1

a0ifi(t) cos(ωit+Ψi(t)− ϕ0i), (2)

where ν0 is the true number of signals in Eq. (1) and the sets {a0i}νmax
i=1 = (a01, . . . , a0νmax) and {ϕ0i}νmax

i=1 =
(ϕ01, . . . , ϕ0νmax) contain the true values of the signal amplitudes and phases.

The maximum-likelihood method is used for estimating the number ν0 of signals. In [10], the following
formula for the logarithm of the likelihood-ratio functional (LRF) is proposed if the interference is additive
white Gaussian noise:

L(l) =
2

N0

T2∫

T1

x(t)s(t, l) dt− 1

N0

T2∫

T1

s2(t, l) dt. (3)

Here, l denotes a family of unknown parameters of the signal s(t, l).

Substituting Eq. (1) into Eq. (3), we write the LRF logarithm

L(ν,aν ,ϕν) =
2

N0

ν∑

m=1

am

T2∫

T1

x(t)fm(t) cos(ωmt+Ψm(t)− ϕm) dt− 1

N0

ν∑

i=1

ν∑

j=1

aiajKij . (4)

Here,ν = 1, . . . , νmax and

Kij =
1

2

T2∫

T1

fi(t)fj(t) cos[ωit+Ψi(t)− ϕi − ωjt−Ψj(t) + ϕj ] dt

+
1

2

T2∫

T1

fi(t)fj(t) cos[ωit+Ψi(t)− ϕi + ωjt+Ψj(t)− ϕj ] dt (5)

is the scalar product of the functions fi(t) cos[ωit+Ψi(t)− ϕi] and fj(t) cos[ωjt+Ψj(t)− ϕj ].

Let us consider the case where the signals in sum (1) satisfy the narrowbandness condition [10, 11]

ωi (T2 − T1) � 1, i = 1, . . . , ν. (6)

In this case, the second term in Eq. (5) is small compared with the first term for all i and j, which allows
us to rewrite Eq. (5) in the form

Kij = Vcij cos(ϕi − ϕj) + Vsij sin(ϕi − ϕj), (7)

where

Vcij =
1

2

T2∫

T1

fi(t)fj(t) cos[(ωi − ωj) t+Ψi(t)−Ψj(t)] dt,

Vsij =
1

2

T2∫

T1

fi(t)fj(t) sin[(ωi − ωj) t+Ψi(t)−Ψj(t)] dt.
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Using Eq. (4), we write the maximum-likelihood algorithm for estimating the number of signals as

ν̂ : L0(ν̂) = sup
ν

L0(ν), ν = 1, . . . , νmax, (8)

where L0(ν) = L(ν,a0ν ,ϕ0ν).

Let us consider the properties of LRF logarithm (4). For this purpose, we substitute realization (2)
of the observed data into Eq. (4) and obtain

L0(ν) =

ν∑

j=1

zj

ν0∑

i=1

ziρij +

ν∑

j=1

zjξj − 1

2

ν∑

j=1

ν∑

i=1

zizjρij . (9)

Here,

ξi =

√
2

N0Kii

T2∫

T1

n(t)fi(t) cos(ωit+Ψi(t)− ϕ0i) dt, ρij =
Kij√
KiiKjj

, ρν = ‖ρij‖νi=1
ν
j=1and

z2i = 2a20iKii/N0 is the signal-to-noise ratio (SNR) for the ith signal. With allowance for Eq. (7), the
coefficient of correlation between ith and the jth signals can be represented as

ρij = ρcij cos(ϕi − ϕj) + ρsij sin(ϕi − ϕj), (10)

where

ρcij = 2Vcij

/√√√√√
T2∫

T1

f2
i (t) dt

T2∫

T1

f2
j (t) dt, ρsij = 2Vsij

/√√√√√
T2∫

T1

f2
i (t) dt

T2∫

T1

f2
j (t) dt.

Using Eqs. (9) and (10), we obtain the auxiliary relationships

L0(ν0)− L0(ν0 +m) = −
ν0+m∑

i=ν0+1

ziξi +
1

2

ν0+m∑

i=ν0+1

ν0+m∑

j=ν0+1

zizjρij ,

L0(ν0)− L0(ν0 −m) =

ν0∑

i=ν0−m+1

ziξi +
1

2

ν0∑

i=ν0−m+1

ν0∑

j=ν0−m+1

zizjρij. (11)

Logarithm (9) is written as the sum of signal and noise components:

L0(ν) = S(ν) +N(ν),

where

S(ν) = 〈L0(ν)〉 =
ν∑

j=1

zj

ν0∑

i=1

ziρij − 1

2

ν∑

j=1

ν∑

i=1

zizjρij , N(ν) = L0(ν)− 〈L0(ν)〉.

From the above expression and Eq. (11), we have

S(ν0)− S(ν0 +m) =
1

2

ν0+m∑

i=ν0+1

ν0+m∑

j=ν0+1

zizjρij , S(ν0)− S(ν0 −m) =
1

2

ν0∑

i=ν0−m+1

ν0∑

j=ν0−m+1

zizjρij .

Taking into account these relationships and the fact that the matrix ρν is nonnegative-definite, we can
conclude that the quantity ν0 corresponds to the upper limit S(ν0) = supν S(ν). Therefore, estimate (8) is
consistent according to [10].

Efficiency of the algorithm for estimating the number of signals can be characterized by the error
probability pe = p(ν̂ �= ν0). However, the calculation of this probability requires substantial computational
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resources. To obtain a simplified approximate formula for the error probability, we note that any algorithm
	 for estimating the signal number can be represented as

ν̂ : R[ν̂;x(t)] = sup
ν

R[ν;x(t)],

where R[ν;x(t)] is the functional determined by the structure of the algorithm 	 and depending on the
number of signals and the realization of the observed data. Using the above expression, the total error
probability for the algorithm 	 can be written as

pe = 1− p{R[ν0;x(t)] > R[i;x(t)], i �= ν0, i = 1, . . . , νmax}. (12)

Then, as an approximation to the total error probability, we consider the abridged error probability for the
algorithm 	, which is determined as

pt = 1− p{R[ν0;x(t)] > R[ν0 + 1;x(t)], R[ν0;x(t)] > R[ν0 − 1;x(t)]}. (13)

Equation (13) shows that the abridged error probability is the lower boundary for the total error probabil-
ity (12) if 1 < ν0 < νmax. It should also be noted that the abridged error probability coincides with the
total error probability if νmax = 3 and ν0 = 2.

Let us find the abridged error probability (13) for algorithm (8):

pt0 = 1− p[L0(ν0) > L0(ν0 + 1), L0(ν0) > L0(ν0 − 1)]. (14)

Using Eq. (11) for m = 1, we rewrite Eq. (14) in the form

pt0 = 1− p(ξν0 > −zν0/2, ξν0+1 < zν0+1/2). (15)

Taking into account that ξν0 and ξν0+1 are the Gaussian random quantities with zero mathematical expec-
tations, unit variances, and the correlation coefficient 〈ξν0ξν0+1〉 = ρν0,ν0+1, we obtain the following formula
for calculating the abridged error probability (15) for algorithm (8):

pt0 = 1− 1

2π
√

1− ρ2ν0,ν0+1

zν0+1/2∫

−∞

∞∫

−zν0/2

exp

[
−x2 − 2xyρν0,ν0+1 + y2

2 (1− ρ2ν0,ν0+1)

]
dxdy. (16)

After the change of variables, Eq. (16) is rewritten as

pt0 = 1− 1√
2π

zν0+1/2∫

−∞
exp

(
−y2

2

)
Φ̃

⎛

⎝zν0/2 + ρν0,ν0+1y√
1− ρ2ν0,ν0+1

⎞

⎠ dy, (17)

where Φ̃(x) =
∫ x
−∞ exp(−t2/2) dt/

√
2π is the probability integral.

Let us consider the special case where the signals in Eq. (1) are orthogonal. In this case, ρν0,ν0+1 = 0
and the abridged error probability (16) takes the form

pt0 = 1− Φ̃(zν0/2)Φ̃(zν0+1/2). (18)

If z2ν0+1 = z2ν0 = z2, then for a sufficiently large value of z2, instead of Eq. (18), one can use the asymptotic
formula

pt0 ≈ 2

z

√
2

π
exp

(
−z2

8

)
. (19)
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We now consider the case where ρν0,ν0+1 → 1, i.e.,

Fig. 1. Error probability for known amplitudes and
phases.

the signals sν0(t) and sν0+1(t) coincide. Then Eq. (16) is
written as

pt0 = 1− 1√
2π

zν0+1/2∫

−zν0/2

exp

(
−y2

2

)
dy

= 2− Φ̃
(zν0+1

2

)
− Φ̃
(zν0

2

)
. (20)

If we put z2ν0+1 = z2ν0 = z2 and assume that the value
of z2 is sufficiently large, then asymptotic formula (19) is
obtained for the probability given by in Eq. (20). There-
fore, for a sufficiently large signal-to-noise ratio z2, the
abridged error probabilities in the cases ρν0,ν0+1 → 0 and
ρν0,ν0+1 → 1 coincide. The latter result is attributed
to the fact that the cases with different numbers of sig-
nals (even identically shaped) are significantly different
from the energy viewpoint when the signal amplitudes
and phases are known and the SNR is sufficiently large.

Consider the special case where all the functions of
the set {fi(t)}νmax

i=1 are identically equal to unity in the in-
terval T1 ≤ t ≤ T2 and Ψi(t) = 0. Then the radio signals
in Eq. (1) are the segments of the harmonic oscillations.
We also assume that for any 1 ≤ k ≤ νmax, the equality
ωk = kω, where ω is the real number, is fulfilled. If the
signals in Eq. (1) satisfy the narrowbandness condition
specified by Eq. (6), then Eq. (10) for the correlation co-
efficient of the ith and jth signals (i �= j) is written in the
form

ρij =
sin[2π (i− j) D̃]

2π (i− j) D̃
cos(ϕi − ϕj) +

sin2[2π (i− j) D̃]

π (i− j) D̃
sin(ϕi − ϕj),

where D̃ = ωT/(2π). Figure 1 shows theoretical dependences of the abridged error probability (16) on D̃ in
the cases of in-phase signals (ϕi+1 − ϕi = 0; dash–dot lines), quadrature signals (ϕi+1 − ϕi = π/2; dotted
lines), and the antiphase signals (ϕi+1 − ϕi = π; dashed lines). In addition, the solid lines in Fig. 1 show
the abridged error probability (18) for signal-number estimation algorithm (8) in the case where the signals
are orthogonal . The line sets 1 and 2 correspond to the SNRs zν0 = zν0+1 = 1 and zν0 = zν0+1 = 2.5,
respectively. Figure 1 shows that when estimating the number of signals the abridged error probability (17)
tends to the abridged error probability (18) for the orthogonal signals with increasing D̃ in all the three
considered cases. The difference between the initial radio-signal phases does not significantly influence the
error-probability value for D̃ > 4.

3. PROPERTIES OF THE LRF LOGARITHM

Let us consider the case where the received-signal amplitudes and phases are a priori unknown. The
following notations are used:

(
Gcij

Gsij

)
=

T2∫

T1

fi(t)fj(t)

(
cos[ωit+Ψi(t)] cos[ωjt+Ψj(t)]
sin[ωit+Ψi(t)] sin[ωjt+Ψj(t)]

)
dt,
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(
Gscij

Gcsij

)
=

T2∫

T1

fi(t)fj(t)

(
sin[ωit+Ψi(t)] cos[ωjt+Ψj(t)]
cos[ωit+Ψi(t)] sin[ωjt+Ψj(t)]

)
dt, (21)

Xci =

T2∫

T1

x(t)fi(t) cos[ωit+Ψi(t)] dt, Xsi =

T2∫

T1

x(t)fi(t) sin[ωit+Ψi(t)] dt,

Aci = ai cosϕi, Asi = ai sinϕi. (22)

Here, Aci and Asi are the signal quadratures: i = 1, . . . , ν and j = 1, . . . , ν. Quantities (21) and (22) are
the elements of the matrices Gcν , Gsν , Gcsν , and Gscν and the vectors Xcν , Xsν , Acν , and Asν , respectively.
In the case of narrowband radio signals (6), the following relationships are valid for the elements (21):

Gcij = Gsij = Vcij , Gscij = Gcsij = Vsij . (23)

Let us rewrite the LRF logarithm in Eq. (4) using the above-introduced notations:

L(ν,Acν ,Asν) =
2

N0
(A+

cνXcν +A+
sνXsν)

− 1

N0
(A+

cνGcνAcν +A+
sνGsνAsν +A+

cνGcsνAsν +A+
sνGscνAcν), (24)

where the superscript + denotes transposition. Denote

Aqν =

(
Acν

Asν

)
, Xν =

(
Xcν

Xsν

)
, Gν =

(
Gcν Gcsν

Gscν Gsν

)
,

so that the LRF logarithm in Eq. (24) takes the form

L(ν,Aqν) =
2

N0
A+

qνXν − 1

N0
A+

qνGνAqν . (25)

Using Eq. (25), we find the maximum-likely estimate

Âqν = G−1
ν Xν

of the signal-quadrature vector for an arbitrary value of the parameter ν.

Substituting the vector Âqν into Eq. (25), we obtain an expression for the LRF logarithm maximized
by unknown signal quadratures:

Lm(ν) =
1

N0
X+

ν G
−1
ν Xν =

1

N0

(
Xcν

Xsν

)+(
Gcν Gcsν

Gscν Gsν

)−1(
Xcν

Xsν

)
. (26)

With allowance for Eq. (23), Eq. (26) for the narrowband radio signals can be written as

Lm(ν) =
1

N0

(
Xcν

Xsν

)+ (
Vcν V+

sν

Vsν Vcν

)−1(
Xcν

Xsν

)
,

where Vcν and Vsν are the matrices of the elements Vcij and Vsij , respectively.

As a result, the algorithm of the maximum-likely estimate of the number of radio signals with the
unknown amplitudes and phases takes the form

ν̂ : Lm(ν̂) = sup
ν

Lm(ν), ν = 1, . . . , νmax. (27)
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In what follows, it is shown (see Eq. (44)) that function (26) does not decrease with increasing number ν of
signals, so that direct use of the maximum-likelihood method for estimating the number of radio signals with
unknown amplitudes and phases is impossible. Therefore, instead of the maximum-likelihood algorithm (27),
its modifications are used. The following algorithms can be referred to such modifications.

1. The algorithm with a linear penalty function:

LD(ν;Xν , κ) = Lm(ν)− κν, κ > 0; ν̂ : LD(ν̂;Xν , κ) = sup
ν

LD(ν;Xν , κ), ν = 1, . . . , νmax. (28)

The algorithm for estimating the number of signals by the AIC criterion [7] is the special case of algo-
rithm (28) for κ = 2.

2. The algorithm with a random penalty function [2]:

LD1(ν;Xν , κ1) = Lm(ν)− κ1ν max
i

[
1

N0

(
X2

ci

Gcii
+

X2
si

Gsii

)]
, κ1 > 0, 1 ≤ i ≤ νmax;

ν̂ : LD1(ν̂;Xν , κ1) = sup
ν

LD1(ν;Xν , κ1), ν = 1, . . . , νmax. (29)

3. The algorithm with an invariant random penalty function, which is proposed in this work:

LD2(ν;Xν , κ2) = Lm(ν)− κ2ν max
i

[Lm(i)− Lm(i− 1)], κ2 > 0, 1 ≤ i ≤ νmax;

ν̂ : LD2(ν̂) = sup
ν

LD2(ν), ν = 1, . . . , νmax. (30)

In the case where the signals are orthogonal, algorithm (30) reduces to algorithm (29) with the random
penalty function.

4. The algorithm with a inverse penalty function, which is proposed in this work:

LB(ν;Xν , n) =
Ln
m(ν)

ν
, n > 1;

ν̂ : LB(ν̂;Xν , n) = sup
ν

LB(ν;Xν , n), ν = 1, . . . , νmax. (31)

Note that all the above algorithms depend on certain parameters κ, κ1, κ2, and n, which should have
particular numerical values to ensure practical use of the algorithms. In what follows, when analyzing
algorithms (28)–(31), their abridged error probabilities will be obtained (analytically and by statistical
simulation). The study of the abridged error probabilities as functions of the parameters κ, κ1, κ2, and n
allows one to determine the optimal values of the above parameters from the viewpoint of the minimum
abridged error probability. However, it is clear that algorithm (31) is consistent for all values of the parameter
n > 1, whereas algorithms (28), (29), and (30) can become inconsistent for some values of the parameters
κ, κ1, and κ2, respectively.

To analyze algorithms (28)–(31) in terms of the abridged error probability, the LRF logarithm in
Eq. (26) is represented as

Lm(ν) =
X+

ν G
−1
ν Xν

N0
=

1

2

ν∑

i=1

(l2ci + l2si), (32)

where

l2si =
2

N0

[(
Xci

Xsi

)+ (
Gci Gcsi

Gsci Gsi

)−1(
Xci

Xsi

)
−
(

Xci

Xs(i−1)

)+(
Gci Gcsi(i−1)

Gsc(i−1)i Gs(i−1)

)−1(
Xci

Xs(i−1)

)]
,

l2ci =
2

N0

[(
Xci

Xs(i−1)

)+(
Gci Gcsi(i−1)

Gsc(i−1)i Gs(i−1)

)−1(
Xci

Xs(i−1)

)
−
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−
(
Xc(i−1)

Xs(i−1)

)+(
Gc(i−1) Gcs(i−1)

Gsc(i−1) Gs(i−1)

)−1(
Xc(i−1)

Xs(i−1)

)]
.

Here, the matrices Gcsi(i−1) and Gcs(i−1)i have the elements Gcsmk, where m = 1, . . . , i and k =
1, . . . , i − 1, and the elements Gcsmk, where m = 1, . . . , i− 1, k = 1, . . . , i, respectively, and the matrices
Gsci(i−1) and Gsc(i−1)i are specified in a similar way.

To study the properties of the random quantities {lci}νmax
i=1 and {lsi}νmax

i=1 , we formulate and prove the
following statement. Let {Ai}Ni=1 be a set of random quantities with finite second moments. We consider the
vectors An and the matrices Cn with the elements Ai and Cij , respectively, where i = 1, . . . , n, j = 1, . . . , n,
Cij = cov(Ai, Aj) = 〈(Ai − 〈Ai〉) (Aj − 〈Aj〉)〉 is the correlation moment [11] (or covariance) of the random
quantities Ai and Aj , and n = 1, . . . , N . In addition, we define the random function r(n) of the natural
variable n and the random quantities {Bn}Nn=1 as follows:

r(n) = A+
nC

−1
n An, (33)

B2
n =

{
r(1), n = 1,

r(n)− r(n− 1), n ≥ 2.
(34)

Then we formulate Statement 1: the random quantities {Bn}Nn=1, which satisfy Eq. (33), are mutually
uncorrelated and have a unit variance.

Let us prove Statement 1. For n = 1, the random quantity B1 is determined by the expression
B2

1 = A2
1/C11. Let us consider the case n > 1 in more detail. Using vector gn with the elements Cin, where

i = 1, . . . , n− 1, we rewrite Eq. (33) in the form

r(n)− r(n− 1) = A+
nC

−1
n An −A+

n−1C
−1
n−1An−1

=

[(
An−1

An

)+(
Cn−1 gn
g+
n Cnn

)−1(
An−1

An

)
−A+

n−1C
−1
n−1An−1

]
. (35)

Using the Frobenius formula [12], we transform the block matrix in Eq. (35) as

(
Cn−1 gn
g+
n Cnn

)−1

=

(
C−1

n−1 +C−1
n−1gnH

−1g+
nC

−1
n−1 −C−1

n−1gnH
−1

−H−1g+
nC

−1
n−1 H−1

)
, (36)

where H = Cnn − g+
nC

−1
n−1gn is the Schur complement. It is shown in [13] that if the matrices Cn and

Cn−1 are nondegenerate, then H �= 0. Moreover, if the matrix Cn−1 is positive-definite, then H−1 > 0 [12].
Performing identical transformations in Eq. (35) and using Eq. (36), we obtain

B2
n = r(n)− r(n− 1) = (An −A+

n−1C
−1
n−1gn)

2/H. (37)

Then the random quantities {Bi}Ni=1, which satisfy Eq. (37), are written in the form

Bn = γn (An −A+
n−1C

−1
n−1gn)/

√
H, n > 1; B1 = γ1A1/

√
C11, (38)

where the coefficient γn = 1 or γn = −1 for any 1 ≤ n ≤ N .

Let β = 1, . . . , N , α = 1, . . . , N , and for definiteness we put β > α. Obviously, cov(B1, Bβ) = 0.
Let us show that Bα and Bβ are also uncorrelated in the case where β > 1 and α > 1:

cov(Aα −A+
α−1C

−1
α−1gα, Aβ −A+

β−1C
−1
β−1gβ) = cov(A+

α−1C
−1
α−1gα,A

+
β−1C

−1
β−1gβ)

− cov(Aα,A
+
β−1C

−1
β−1gβ)− cov(A+

α−1C
−1
α−1gα, Aβ) + cov(Aα, Aβ)
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= cov(g+
α(β−1)C

−1
(α−1) (β−1)Aβ−1,g

+
β C

−1
β−1Aβ−1)− g+

α(β−1)C
−1
β−1gβ − g+

αC
−1
α−1gβ(α−1) + Cαβ. (39)

In Eq. (39) it is taken into account that cov(An,An) = Cn and the following notations are introduced:

gα(β−1) = (Cα1, . . . , Cα(β−1)), gβ(α−1) = (C1β, . . . , C(α−1)β),

(C−1
(α−1) (β−1))ij =

{
(C−1

α−1)ij , i ≤ α− 1, j ≤ α− 1;

0, α− 1 < i ≤ β − 1, α− 1 < j ≤ β − 1,
(40)

where i = 1, . . . , β − 1 and j = 1, . . . , β − 1.

It can be shown that the relationship cov(Q̃+Y, Ũ+Y) = Q̃+RŨ, where R = cov(Y,Y) is the
matrix of the correlation moments (covariance matrix) of the vector Y, is valid for all deterministic vectors
Q̃ and Ũ and the random vector Y. Calculating covariance (39) with the help of the above relationship
and allowing for notations (40), we obtain

cov(g+
α(β−1)C

−1
(α−1) (β−1)Aβ−1,g

+
β C

−1
β−1Aβ−1)− g+

α(β−1)C
−1
β−1gβ − g+

αC
−1
α−1gβ(α−1) + Cαβ

= g+
αC

−1
α−1gβ(α−1) − g+

αC
−1
α−1gβ(α−1) − g+

α(β−1)C
−1
β−1gβ + Cαβ

= Cαβ − g+
α(β−1)C

−1
β−1gβ = Cαβ − Cαβ = 0. (41)

According to Eq. (41), the random quantities Bα and Bβ are uncorrelated for all β �= α. Therefore,
the random quantities {Bi}Ni=1, which satisfy Eq. (33), are mutually uncorrelated.

We denote the variance of the quantity Bn as D(Bn) = cov(Bn, Bn). Obviously, D(B1) = 1 and for
n > 1 we write

D(Bn) = D
[
γn (An −A+

n−1C
−1
n−1gn)/

√
H
]

=
[
D(A+

n−1C
−1
n−1gn) +D(An)− 2 cov(A+

n−1C
−1
n−1gn, An)

] /
H = 1.

Therefore, the random quantities of the set {Bn}Nn=1 have unit variance.

Note that in Statement 1 and its proof, the random quantities An can be interpreted as the vectors
in the linear vector space, while the covariance can be interpreted as the scalar product of the vectors in this
space. In fact, the covariance properties of the random quantities, which are used in the proof of Statement
1, also hold for the scalar product of the vectors. In such an interpretation, the vectors Bn in Eq. (34) specify
the orthogonalization procedure for the vectors An, which is similar to the Gram–Schmidt procedure.

Let U be an invertible N ×N matrix and E be a column vector with dimension N . Assume that the
matrix W and the vector R are obtained from the matrix U and the vector E as follows:

Wij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ugj , i = q;

Uqj , i = g;

Uig, j = q;

Uiq, j = g;

Uij , i �= g ∧ i �= q ∧ j �= g ∧ j �= q,

Ri =

⎧
⎪⎨

⎪⎩

Eg, i = q;

Eq, i = g;

Ei, i �= g ∧ i �= q.

It can be shown that the matrix W is invertible and the following equality takes place:

E+U−1E = R+W−1R. (42)

Successively transposing the rows and columns in the matrix G−1
ν in Eq. (25), as well as the elements
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of the vector Xν in Eq. (25), and using Eq. (42), we obtain the relationships

(
Xci

Xsi

)+(
Gci Gcsi

Gsci Gsi

)−1(
Xci

Xsi

)
= Y+

i F
−1
i Yi,

(
Xci

Xs(i−1)

)+(
Gci Gcsi(i−1)

Gsc(i−1)i Gs(i−1)

)−1(
Xci

Xs(i−1)

)
= Y+

i−1F
−1
i−1Yi−1,

(
Xc(i−1)

Xs(i−1)

)+(
Gc(i−1) Gcs(i−1)

Gsc(i−1) Gs(i−1)

)−1(
Xc(i−1)

Xs(i−1)

)
= Y+

i−2F
−1
i−2Yi−2.

where Yk = Xck for even k, Yk = Xsk for odd k, Yi = (Y1, . . . , Yi), and Fi = cov(Yi,Yi). Hence, the
quantities l2si, l

2
ci (i = 1, . . . , νmax) can be represented in the form

l2si = Y+
i F

−1
i Yi −Y+

i−1F
−1
i−1Yi−1, l2ci = Y+

i−1F
−1
i−1Yi−1 −Y+

i−2F
−1
i−2Yi−2. (43)

It is shown in Statement 1 that the random quantities B2
i are the squared Gaussian random quantities Bi.

By analogy, using Eq. (43), it can be shown that the random quantities l2ci and l2si are also the squared
Gaussian random quantities lci and lsi, respectively. Let us indicate the properties of the Gaussian random
quantities of the sets {lci}νmax

i=1 and {lsi}νmax
i=1 .

Statement 2. The Gaussian random quantities of the set {lci}νmax
i=1 ∪ {lsi}νmax

i=1 are independent and
have unit variances, and, in addition, the mathematical expectations of the random quantities of the set
{lci}νmax

i=ν0+1 ∪ {lsi}νmax
i=ν0+1 are equal to zero.

The proof of the Statement 2 immediately follows from Statement 1 and Eq. (43).

4. CHARACFTERISTICS OF THE ESTIMATES OF THE NUMBER OF RADIO SIGNALS
WITH UNKNOWN AMPLITUDES AND PHASES

Let us analyze algorithms (28)–(31) in terms of the abridged error probability. To this end, the
explicit form of realization (2) of the received data is substituted into Eq. (27) for the modified maximized
LRF logarithm. On the basis of Eq. (32) and Statement 1, Eq. (26) for the maximized LRF logarithm can
be rewritten as

Lm(ν) =
1

2

ν∑

i=1

Qi, (44)

where

Qi =

{
(dci + ξci)

2 + (dsi + ξsi)
2, i ≤ ν0;

ξ2ci + ξ2si, i > ν0,

i = 1, . . . , νmax, dci and dsi are the mathematical expectations of the random quantities lci and lsi, respec-
tively, and ξci and ξsi are the independent Gaussian random quantities with zero mathematical expectations
and unit variances. According to Eq. (44), the LRF logarithm in Eq. (26) is a nondecreasing function of the
number of signals. In addition, it can be shown that for any i ≤ ν0, the quantity d2i = d2ci + d2si monotonical
increases with increasing SNR z2i .

Using Eq. (44), the modified maximized LRF logarithm (28) with a linear penalty function can be
rewritten in the form

LD(ν;Xν , κ) =
1

2

ν∑

i=1

Qi − κν. (45)

Then, using Eq. (45), one can calculate the abridged error probability (13) for algorithm (28) with a linear
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penalty function as

pt1 = 1− p(Qν0 > 2κ,Qν0+1 < 2κ) = 1− Fν0+1(2κ) + Fν0(2κ)Fν0+1(2κ), (46)

where Fν0(x) is the function of the noncentral χ2 distribution with two degrees of freedom and the non-
centrality parameter d2ν0 = d2cν0 + d2sν0 , and Fν0+1(x) is the function of the central χ2 distribution with two
degrees of freedom. With allowance for the properties of the function Fν0(x), it can be shown that for an
unlimited increase in the parameter d2ν0 , the abridged error probability is written as

pt1 → 1− Fν0+1(2κ). (47)

Therefore, the abridged error probability tends to a constant value with increasing parameter d2ν0 . The
limiting value of error probability (47) can be used for approximate choice of the coefficient κ in Eq. (28).
Indeed, the choice of κ can be recommended by the value of the acceptable error probability pt1.

As is noted above, the abridged error probability is the lower boundary of the total error probability.
Therefore, it follows from Eqs. (44) and (47) that the total error probability does not tend to zero with
increasing d2ν0 and, hence, SNR z2ν0 . This property is a serious disadvantage of algorithm (28).

Unfortunately, in the general case, it is difficult to analytically obtain even the abridged error prob-
ability for algorithm (29). This probability can be calculated if the radio signals are orthogonal, i.e., algo-
rithms (29) and (30) coincide. When estimating the number of correlated radio signals, the error probability
for algorithm (29) can be obtained using statistical simulation.

Let us analyze algorithm (30) with the invariant random penalty function (30). For this purpose,
we again use Eq. (44) to represent the modified maximized LRF logarithm with invariant random penalty
function (30) in the form

LD2(ν;Xν , κ2) =
1

2

ν∑

i=1

Qi − 1

2
κ2ν max

i
Qi, i = 1, . . . , νmax. (48)

Calculate the abridged error probability in Eq. (13) as

pt2 = 1− p
(
Qν0 > κ2 max

i
Qi, Qν0+1 < κ2 max

i
Qi

)
, i = 1, . . . , νmax. (49)

An auxiliary statement can formulated for the further calculation of the probability pt2.

Let {Ãi}Mi=1 be a set of the mutually independent random quantities; k = 1, . . . ,M ; 0 ≤ h ≤ 1; and
B̃ = max

i
Ãi, where i = 1, . . . ,M , i �= k and i �= k + 1. Then

p(Ãk > h max
i=1, ... ,M

Ãi, Ãk+1 < h max
i=1, ... ,M

Ãi) = p(Ãk > hÃk+1, Ãk > hB̃)

− p(Ãk > Ãk+1, Ãk+1 > hÃk, Ãk+1 > hB̃)− p(Ãk+1 > Ãk, Ãk > hÃk+1, Ãk > hB̃). (50)

Using Eqs. (49) and (50), we can write the final formula for the abridged error probability for algorithm (30)
with the invariant penalty function:

pt2 = 1−
∞∫

0

Wν0(x)Fν0+1

(
x

κ2

)
FQmax

(
x

κ2

)
dx+

∞∫

0

Wν0+1(x)FQmax

(
x

κ2

)

×
[
Fν0

(
x

κ2

)
− Fν0(x)

]
dx+

∞∫

0

Wν0(x)FQmax

(
x

κ2

)[
Fν0+1

(
x

κ2

)
− Fν0+1(x)

]
dx, (51)

where Wi(x) and Fi(x) are the probability density and the distribution function of the random quantity Qi,
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respectively, while WQmax(x) and FQmax(x) are the probability density and the distribution function of the
random quantity Qmax = max

i
Qi, respectively, where i = 1, . . . , νmax, i �= ν0, and i �= ν0 + 1.

The distribution function FQmax(x) is written in the form

FQmax(x) =

νmax∏

i=1,
i �=ν0,i �=ν0+1

Fi(x).

Hereafter, for i ≤ ν0, the dependences Wi(x) and Fi(x) are the probability density and the distribution
function of the noncentral χ2 distribution with the noncentrality parameter d2i = d2ci + d2si and two degrees
of freedom, respectively [14], while for i > ν0, the above dependences are the probability density and the
distribution function of the central χ2 distribution with two degrees of freedom, respectively [14].

Using again Eq. (44), we rewrite the modified maximized LRF logarithm (31) with an inverse penalty
function in the form

LB(ν;Xν , n) =

(
1

2

ν∑

i=1

Qi

)n/
ν. (52)

Using Eq. (52), we can calculate the abridged error probability (13) for the algorithm with the inverse
penalty function as

pt3 = 1−
∞∫

0

Wν0+1(y)

∞∫

0

Wν0(x) [F0(x/A
∗)− F0(y/B

∗ − x)] dxdy. (53)

Here, F0(x) is the function of the noncentral χ2 distribution with the noncentrality parameter
∑ν0−1

i=1 (d2ci+d2si)
and 2 (ν0 − 1) degrees of freedom. As above, Wν0(x) is the probability density function of the noncentral
χ2 distribution with two degrees of freedom and the noncentrality parameter d2i = d2ci + d2si, Wν0+1(x)
is the probability density function of the central χ2 distribution with two degrees of freedom [14], A∗ =
n
√

ν0/(ν0 − 1) − 1, and B∗ = n
√

(ν0 + 1)/ν0 − 1.
Let us study the dependence of the abridged error probability of algorithms (30) and (31) on the

SNR. For better clarity, it is assumed that ai = a0 for all i, Kij = E for i = j, and Kij = 0 for i �= j. Then
for any i, the quantities dci and dsi are only functions of the SNR z = a0

√
2E/N0 and can be written as

dci = dsi = z/
√
2. (54)

In addition, in this case, the abridged error probability for algorithm (29) coincides with probability (51).
To study algorithms (30) and (31), we performed numerical calculations using the obtained analytical

formulas given by Eqs. (51) and (53) and the statistical simulation of the algorithms. Using the results of
numerical calculations with the help of Eqs. (51) and (53), we have established that the abridged error
probability of algorithms (30) and (31) significantly depends on the parameters κ2 and n, respectively.
Therefore, it is proposed to seek the studied-algorithm parameters that are optimal from the viewpoint of
the minimum abridged error probability. To this end, it is sufficient to substitute the values of dν0 and
dν0−1 into Eqs. (51) and (53) for any particular values of the SNR vector zνmax and then find the minima
of abridged error probabilities (51) and (53) as functions of the corresponding parameter (κ1 and n for the
probabilities pt2 and pt3, respectively).

The considered procedure was performed for the above-described case (54). Then we obtained the
quantities κopt2 = 0.31 and nopt = 2.5 such that pt2(κ

opt
2 ) = inf pt2(κ2) and pt3(n

opt) = inf pt3(n). The
obtained values are accepted as the parameters of algorithms (30) and (31) during the statistical simulation
and numerical calculations. It should be noted that the above optimization makes sense only if the optimal
value of the algorithm parameter weakly depends on the SNR.
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During the study, it was clarified that the optimal

Fig. 2. Error probability for the a priori unknown
amplitudes and phases.

values of the parameters κ1 and κ2 in algorithms (29)
and (30), respectively, significantly depend only on the
maximum possible number νmax of signals (if the signals
are orthogonal). At the same time, the optimal values of
the parameter n in Eq. (31) are almost identical for all
SNR values and νmax ≤ 21.

Figure 2 shows the results of calculating the abridged
error probability of algorithms (30) and (31) by Eqs. (51)
and (53). The solid line shows the error probability in
determining the number ν0 of radio signals with known
amplitudes and phases by algorithm (8) as a function of
the SNR. The dotted line shows the theoretical depen-
dence of the error probability in determining the value
of ν0 by algorithm (30) on the SNR (see Eq. (51)). The
dashed line shows the theoretical dependence of the error
probability in evaluating ν0 by algorithm (31) on the SNR
(see Eq. (53)). The squares and circles show the error
probabilities in evaluating ν0 by algorithms (30) and (31),
respectively, on the SNR. The latter values are obtained
using statistical simulation. Algorithm (28) with linear
penalty function (28) is not shown in Fig. 2 since its opti-
mal value of the parameter κ significantly depends on the
SNR.

The calculation results in Fig. 2 indicate that the formulas obtained for the abridged error probabilities
are in satisfactory agreement with the data of the statistical simulation of the algorithms for estimating the
number of signals. Figure 2 also shows that the a priori ignorance of the amplitudes and phases of the
received signals substantially affects the accuracy of their number estimation. It can also be noted that the
operation quality of optimized algorithms (30) and (31) is almost the same.

5. CONCLUSIONS

The proposed abridged error probability in estimating the number of radio signals allows one to
relatively simply characterize the efficiency of various algorithms for estimating the number of radio signals.
The obtained results of analyzing several algorithms for estimating the number of signals make it possible to
reasonably choose the required estimation algorithm and optimize its parameters. The results of theoretical
calculation are in satisfactory agreement with those of statistical simulation. It has been shown that a
priori ignorance of the amplitudes and phases of the received radio signals can significantly deteriorate the
operation quality of the algorithms for estimating the number of signals.

This work was supported by the Russian Foundation for Basic Research (project Nos. 13–01–97504
and 13–08–00735), the Russian Science Foundation (project No. 14–49–00079), and the Ministry of Educa-
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