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As is known, one of the main problems  solved by
machine vision systems is the estimation of parameters
of volumetric objects from their images [1, 2]. One of
the parameters requiring exact estimation in problems
of the analysis of irregularities of images with a sto�
chastic structure is the area of irregularities of the
image. When developing practically implementable
algorithms, it is necessary to have predictable charac�
teristics of area estimation algorithms and analyze the
influence of the prior uncertainty in the parameters of
the images of the object and underlying surface on the
quality of the estimate. Such analysis can be per�
formed with the use of pertinent models of the image
and background. One of such models, appropriate for
describing objects with a stochastic texture, may be the
model in the form of a Gaussian random field [3–5],
which is widely used for the synthesis of optimal algo�
rithms for finding and filtration of images [4]. This
model enables one to describe textures of images and
background by specifying their space correlation func�
tions. In addition, this model is a special case of a gen�
eralized Gaussian model [6] describing a wide class of
real�life images.

The problem of estimating the area of a Gaussian
volumetric object observed on a Gaussian background
was considered in [7] in the case when the parameters
of the image and background are known. The aim of
the present work is the synthesis and analysis of the
efficiency of area estimation algorithms when the reg�
ular components and intensities of the image and
background are unknown.

Assume that the observed data  are a realization
of a random field and occupy a two�dimensional

( )x r
�

region G with the area χG. Here,  is the radius
vector of a point on a plane belonging to G. The field

 contains the useful image of an object  the
spatial noise , and the background radiation 
This radiation is caused by the scattering of the sensing
signal by the underlying surface, on which the object
to be detected is found. For taking into account the
shading of the background, which takes place in prac�
tice, we will use an applicative model of the interaction
between the image and the background [5], in which
the observed realization can be represented in the form
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 are the indicators of the regions occupied by
the image  and the background 

 = 1 if  and  = 0 if

 is the indicator of the region  having the
area χ; and χ0 is the true value of the unknown area,
which can take the values from the interval  

Henceforward we will assume that the image 

and the background  are homogeneous statically
mutually independent Gaussian fields with the regular
components (mathematical expectations) as and a

ν

and the correlation functions  and  We will
also assume that the spectral densities of the image,

 = , and the background,

 = , are constant in the
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side these ranges, the spectral densities of the image
and background are zero, i.e.,  =  and

 =  where  = 1 for  and

 = 0 for  gs =  and g
ν
 =  We

assume that the spatial noise  is mutually indepen�
dent with the image and the background and is a real�
ization of a centered white Gaussian noise with zero
mean and single�sided spectral density N0.

Thus, the problem is to estimate the unknown area
χ0 of the image with unknown components as and a

ν

and relative intensities of the image, qs = , and
background, q

ν
 = 

For estimating the unknown area according to the
statistical decision theory [8], we find the unknown
form of the likelihood ratio functional (LRF) for test�
ing hypothesis (1) against the alternative  = 
In this case we assume that the areas of the image and
background substantially exceed the area of their spa�
tial correlation, i.e.,

(2)

where S
ωs and S

ων
 are the areas of the regions ωs and

ω
ν
, respectively. Then, extending the results of [9] to

the case of an unknown area, we approximate the log�
arithm of the LRF (log�LRF) as follows:

(3)

where

(4)

(5)

are the log�LRFs for the regions presumably occupied
by the image and the background. In expressions (4)
and (5) we use the following notation:

  

 

where  and  are the signals at the outputs of
the spatial filters whose transfer functions satisfy the

conditions  =  and  = ,
respectively. Expressions (3)–(5) show that, in order
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to form the log�LRF, one has to obtain a linear combi�
nation of four functions:    and

 which depend on the unknown value of the
area. In this case, to form  and , one should
apply two linear filters: the frequency characteristic of
one of them is determined by the spectral density of
the image and that of the other one, by the spectral
density of the background. The signals at the outputs
of these filters should be squared and integrated over
the region occupied by the image. In addition, it is
necessary to form the integrals  and  of the
accepted realization of the observed data over the
region occupied by the image and background.

At first, let us consider the quasi�likelihood
approach to estimating the unknown area when the
mathematical expectations of the image and back�
ground intensities are unknown. To this end, we
replace the unknown values of the parameters as, qs,

a
ν
, and q

ν
 in (3) by some predicted values   

and  generally different from the true values as0, qs0,
a
ν0, and q

ν0. Then the estimate of the unknown area is
defined as the position of the absolute maximum of

  

According to [9, 10], as  and , the
distribution of functionals (4) and (5) at a fixed
unknown parameter χ tends to the Gaussian one.
Henceforward we will assume that the minimum
image area χmin and the maximum background area

 are so large that  and  Then, as
was shown in [7], in the vicinity of the true value of the

parameter, χ0, the log�LRF    (3) as a
function of the unknown area  may be approximately
considered a Gaussian Markov process. Using the
method for calculating the characteristics of a Gauss�
ian Markov process [9], we find the following expres�
sions for the drift coefficient,

(6)

and the diffusion coefficient,
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ϕ =  is a coefficient determining the
degree of overlapping of the regions occupied by the
spectral densities of the useful image and the back�
ground, and S

ωsν is the area of overlapping of these
regions. Then, following [9, 11], we estimate the con�
ditional dispersion of the estimate of the area as

(12)

where 

R =     

   

   

and z2 =    

Expression (12) makes it possible to estimate the
influence of the inaccuracy of specifying the predict�

ing values     of the unknown parameters on
the area estimation accuracy. For example, Fig. 1
shows the loss in the area estimation accuracy,

, as a function of the ratio  – 

for  =   =   = 100, ϕ = 0,
 = 10,  = 12,  = 5, and

= 10. Here,  =   
and V0 =    are the dispersion
of area estimation at a prior known regular compo�
nents and relative image and background intensities,

 and  =  –  The

solid curves have been plotted for  = 2, and

dashed lines, for  = 3. Curves 1–3 correspond
to qs0 = 0.75, 0.5, and 0.25.

Figure 2 shows the loss in the area estimation

accuracy as a function of the ratio  – 
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Fig. 1. The loss in the area estimation accuracy vs. pre�
sumed values of image intensity.
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ted for  = 2, and dashed lines, for  = 3.
Curves 1–3 correspond to q

ν0 = 0.75, 0.5, and 0.25.
As follows from Figs. 1 and 2, the errors in the pre�

sumed values of the image intensity  and back�

ground intensity  can substantially reduce the area
estimation accuracy. Moreover, the absolute values of
the relative errors εqs and εqν should not exceed 0.7–
0.9. Otherwise, the use of the quasi�likelihood
approach for overcoming the parametric prior uncer�
tainty in the image or background intensity can result
in a substantial loss in the image area estimation accu�
racy. The comparison of the solid and dashed curves in
Figs. 1 and 2 shows that the sensitivity of the area esti�
mation accuracy to errors in specifying the unknown
values of the image and background intensities
depends on the distance between these values. In
Fig. 1, the background intensity is higher than the
image intensity. As a result, an increase in the true
value of the image intensity leads to an increase in the
loss (solid curves) in the area estimation accuracy. In
Fig. 2, the image intensity is greater than the true value
of the background intensity. In this case, the increase
in the true value of the background intensity also
increases the loss (solid curves) in the area estimation
accuracy. Thus, the smaller the difference between the
true values of the image and background intensities,
the larger is the loss in the area estimation accuracy
caused by the error of specifying the predicted values.

It should also be noted that errors of specifying the
predicted values of the image and background intensi�
ties differently affect the area estimation accuracy. For
example, the curves in Figs. 1 and 2 have been plotted
for δχ = 0.5, where δχ =  –  is the ratio

0
*
s sq q= 0

*
s sq q=

*
sq

*q
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of the minimum image area  to the minimum back�
ground area. It is easy to see that, at such relationship
between the areas χmin, χmax, and χG, the errors in the
predicted values of the background intensity lead to
smaller losses than the same errors in the predicted
image intensity. Nevertheless, if , the errors in
the presumed background intensity can have a greater
effect on the loss in the area estimation accuracy than
the errors in the specified presumed value of the image
intensity.

Figure 3 for  = 10 presents the loss in the
area estimation accuracy as a function of the parameter

δχ. The solid curves have been plotted for = 2

and  and dashed lines, for = 2 and
 Thus, curves 1–3 illustrate the loss in the area

estimation accuracy versus the errors in the predicted
value of the image intensity, and curves 4–6 illustrate
the loss in the area estimation accuracy versus the
errors of specifying the predicted values of the back�
ground intensity. Curves 1–3 correspond to qs0 = 0.75,
0.5, and 0.25; curves 4–6 correspond to q

ν0 = 0.75,
0.5, and 0.25. As follows from the figure, the relation�
ship between the a priori known minimum values of
the image area χmin and the background area 
affects the sensitivity of the quasi�likelihood algorithm
to the errors εqs and εqν. Moreover, the δχ determines
which of the errors εqs and εqν has a greater effect on the
image area estimation accuracy.

Let us consider the loss in the area estimation accu�
racy due to the errors of specifying the values of regular
components of the image and background. Figure 4 pre�
sents the loss in the area estimation accuracy as a func�
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sumed values of background intensity.
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Fig. 3. The loss in the area estimation accuracy vs. param�
eter δχ with errors of specifying the image and background
intensities.
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tion of the relative error  –  at  =

 = 0.3,  and  Curves 1–4 corre�
spond to zs = 30, 40, 50, and 60. Figure 5 presents the
loss in the area estimation accuracy as a function of the

relative error  –  at  =

= 0.3,  and  Curves 1–4 cor�
respond to z

ν
 = 30, 40, 50, and 60. The ratio δχ in

Figs. 4 and 5 was set equal to 0.5.
As follows from Figs. 4 and 5, at the chosen value of

the parameter δχ, the errors εaν lead to greater losses
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in the area estimation accuracy than the same values
of the error εas. At the same time, the errors of specify�
ing the predicted value of the regular image compo�
nent can substantially reduce the image area estima�
tion accuracy (in particular, in the considered exam�
ple, for , the quality of the area estimation
abruptly degrades). It should also be noted that the
curves in Fig. 4 have been plotted for the case of

 In this case, a reduction in zs at a fixed εas leads
to a greater loss in the area estimation accuracy. Simi�
larly, the area estimation accuracy degrades with a
reduction in z

ν
, when , the values of εaν being

fixed (Fig. 5). Therefore, the smaller the difference
between zs and z

ν
, the greater is the loss in the area esti�

mation accuracy caused by the errors of specifying the
predicted values of the regular components of the
image and background.

Figure 6 presents the loss in the area estimation

accuracy as a function of the parameter δχ at  =

 = 0.3. Curves 1–3 have been plotted for

  and  they characterize the

influence of the accuracy of  specifying the predicted
values of the image and background regular compo�
nents. Curves 1–3 correspond to zs = 30, 40, and 50.

Curves 4–6 have been calculated for  
and  they characterize the influence of the
error of specifying the predicted value of the background
regular components on the area estimation accuracy.
Curves 4–6 correspond to z

ν
 = 30, 40, and 50.
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Fig. 4. The loss in the area estimation accuracy vs. pre�
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background area, , can have a  noticeable
effect on the sensitivity of the quasi�likelihood algo�
rithm of area estimation to the errors εas and εaν. In this
case, the parameter δχ determines which of the errors
εas and εaν makes a greater effect on the image area
estimation accuracy. Extending the results presented
in Figs. 3 and 6, we conclude that, at fixed parameters
(μs, μν

, ϕ), a reduction in δχ leads to a greater influ�
ence of the error of specifying the predicted values of
the image intensity and background regular compo�
nent whereas, with an increase in δχ, a greater effect is
exerted by the errors of specifying the background
intensity and the regular image component.

Thus, the accuracy of the quasi�likelihood algo�
rithm for area estimation essentially depends on the

accuracy of specifying the predicted values   

and  The losses caused by the errors of specifying
these quantities can reach substantial values and
depend not only on the energy relationships charac�
terizing the signal�to�noise ratio (μs, qs0, zs) or the
background�to�noise ratio (μ

ν
, q

ν0, zν) but also on the
ratio between the a priori known minimum values of
the image area, χmin, and background area, 

The losses in area estimation accuracy can be

reduced by replacing the presumed values   

and  by the their maximum�likelihood estimates [8].
In this case, the maximum likelihood estimate (MLE)
of the unknown area has the form

(13)

where     =  

 is the MLE of the unknown regular components
of the image and background relative intensities.

Maximizing (4) and (5), we obtain the explicit form
of the estimates    and 

(14)

(15)

Averaging (14) and (15) over the realizations of the
observed data at fixed values as0, qs0, a

ν0, and q
ν0 of all

unknown parameters, we find the mathematical
expectations  =   = 

χ − χmaxG

*,sa *,a
ν

*,sq

*.q
ν

χ − χmax.G

*,sa *,sq *,a
ν

*q
ν

( )

( ) ( ) ( ) ( ) ( )( )

χ

ν ν

χ = χ

χ = χ χ χ χ χ

MLEˆ arg sup ,

ˆ ˆ ˆ ˆ, , , , ,s s

L

L L a q a q

( )ˆ ,sa χ ( )ˆ ,sq χ ( )ˆ ,a
ν
χ ( )q̂

ν
χ

, , ,

arg max ( ,
s s

s
a q a q

L a
ν ν

ν
, ,sq a

, )q
ν
χ

( )ˆ ,sa χ ( )ˆ ,sq χ ( )ˆ ,a
ν
χ ( ) :q̂

ν
χ

( )
( )

( ) ( )
( )

χ
χ =

χ

⎡ ⎤χχχ = χ − −⎢ ⎥μ χ χ⎣ ⎦
min

2

0

ˆ ,

2ˆ 1,

s
s

s
s s

s

X
a

X
q Y

N

( )
( )

( )
( )

( )
( )

( )

ν

ν

ν

ν ν

ν

χ
χ =

χ − χ

⎡ ⎤χ − χ χ
χ = χ − −⎢ ⎥μ χ − χ χ − χ⎣ ⎦

max
2

0

ˆ ,

2
ˆ 1.

G

G

G G

X
a

X
q Y

N
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Taking into account expressions (14) and (15), we
can write log�LRF (13) in the form

(16)

where

 (17)

(18)

From the comparison of (16)–(18) and (3)–(5) we
conclude that the maximum�likelihood algorithm is
more difficult to implement than the quasi�likelihood
algorithm.
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the last term in (17) is proportional admits the approx�
imate representation
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With allowance for (19), functional (17) can be
represented as follows:
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Let us introduce the normalized random variables
with zero mean and unit variance,

 

 

and rewrite expression (20) as

In the obtained expression, let us analyze the behavior

of the factors multiplying the random variables 
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number of degrees of freedom of the image unlimitedly
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and is an asymptotically Gaussian random process.
Then, as was shown in [7], in the vicinity of the true
value of the parameter, χ0, log�LRF  (16) as a
function of the unknown area χ may be approximately
considered a Gaussian Markov process. Using the
method from [9], we find the drift coefficient K1MLE(χ)
and diffusion coefficient K2MLE(χ) of process (6):

(21)

where the coefficients K1QLE and K2QLE are defined
by (6) and (7), respectively.

Relationships (21) imply that the characteristics of
the area estimate with the use of MLE of unknown
image and background regular components asymptot�
ically (as  ) coincide with the charac�
teristics of the area estimate with the use of a priori
known image and background parameters. Thus, the
curves in Figs. 1–6 also characterize the loss in the
area estimation accuracy if the quasi�likelihood esti�

mates    and  are used instead of the MLE
   and  According to Figs. 1–6, the maxi�

mum�likelihood algorithm makes it possible to
increase the accuracy of area estimation with
unknown non�informative parameters of the image
and background. At the same time, the use of the sim�
pler quasi�likelihood algorithm for area estimation
may be appropriate if the relative errors of specifying
the unknown intensities of the image and background
regular components are within ten percent. Depend�
ing on the specified conditions, the particular quanti�
tative recommendations on the application of quasi�
likelihood algorithm can be formulated on the basis of
the expressions obtained above.
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