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In several LIDAR problems [1–4], the estimation
of the distance to the target, which is easily provided
by laser rangers, is supplemented with the estimation
of the radial velocity. Optical pulse trains are widely
used for determination of the parameters of moving
targets. In this regard, it is of interest to study the accu�
racy of the corresponding methods for the estimation
of distance and velocity.

The maximum�likelihood estimations of distance
and velocity upon sounding of object with the aid of an
optical pulse train are considered in [5, 6] and the
potential characteristics of the distance and velocity
estimations are determined. However, significant
problems are encountered in the technical implemen�
tation of the maximum�likelihood algorithms for
simultaneous estimation of two parameters of motion.
The estimations of distance and velocity can substan�
tially be simplified with the aid of the below quasi�
optimal estimation based on the laser ranging for each
pulse in the train.

We assume that the intensity of the emitted optical
pulse train is given by

(1)

where  is the function that describes the intensity of
a single optical pulse, λ is the time position of the
train, and ϑ is the pulse repetition period. Parameter μ
determines the point of the series that is related to time
position λ. In particular, λ determines the position of

sN t( ) ŝ t k μ–( )ϑ– λ–( ),
k 0=

N 1–

∑=

(̂ )s t

the first pulse, middle of the train, and the last pulse
when μ = 0, (N – 1)/2, and N – 1, respectively.

We assume that the detected (processed) signal
results from the scattering of optical pulse train (1) by
an object that is located at distance R0 and moves at
radial velocity V0. In this case, the intensity of the
detected signal is represented as [1, 5, 6]

(2)

where c is the velocity of light. In general, intensity
profile s(t) of the detected pulses may differ from
intensity profile  of the sounding pulses (1).

We assume that

Note that interval of observation [0, T] is greater than
the duration of the pulse train (T > Nϑ) and the pause�
to�pulse ratio is no less than 2, so that the pulses are
not overlapped.

Signal with intensity (2) is observed over time inter�
val [0, T] in the presence of optical noise with constant
intensity ν. Therefore, we process a sample of Poisson
process π(t) with the intensity

and possible distances R0 and velocities V0 belong to
a priori intervals

[Rmin, Rmax], [Vmin, Vmax].
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We introduce the following notation:

A functional of likelihood ratio (FLR) needs to be
formed for the maximum�likelihood estimation [7–10].
Accurate to insignificant terms, such a functional is
represented as [11]

(3)

For the estimation of parameters (R0, V0), we may
employ quantities

(4)

where W = [Rmin, Rmax][Vmin, Vmax] is the a priori set of
possible values of parameters.

The following expressions are obtained in [6] for
the conditional bias and spread of the maximum�like�
lihood estimations of distance and velocity with allow�
ance for anomalous errors:

(5)

Here, the angular brackets denote the statistical aver�
aging over samples of process π(t) at fixed values of all
unknown parameters. In these formulas, probability
P0 of reliable estimation is given by [6]

(6)

where

(7)

(8)

is the signal�to�noise ration (SNR) for the pulse train
with intensity (2),

(9)

is the SNR for a single optical pulse with intensity s(t),

(10)

is the reduced area of the a priori region of the possible
values of unknown distance and velocity [12], and

(11)

The reduced area determines the number of distin�
guishable values of distance and velocity in domain W.

At relatively high SNR (8), probability of reliable
estimation (6) is P0 ≈ 1 for entire train (2). Hence, the
spread of the maximum�likelihood estimations (5) is
represented as

(12)

where

Expressions (12) determine the spread of reliable
maximum�likelihood estimations of distance and
velocity. Such spreads coincide with variances of effi�
cient estimations [1, 2, 4]. Therefore, the maximum�
likelihood estimations of distance and velocity are
asymptotically efficient (with an increase in the SNR
for the entire train) [1, 2, 4].

In accordance with formula (4), logarithm of FLR (3)
must be formed to obtain the maximum�likelihood
estimation as a function of two variables (R and V) for
all possible values (R, V) ∈ W. Such a procedure is dif�
ficult to implement, since a multichannel (with
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respect to velocity) scheme must be employed [7]. In
this case, the ranger contains several parallel channels
each of which produces logarithm of FLR L(R, Vj) at
points Vj ∈ [Vmin, Vmax] that are chosen with a step that
provides the desired measurement accuracy. Each
channel of the measurement system must contain a
matched filter for a single pulse and a perfect comb fil�
ter [13]. However, the technical implementation of the
comb filter at a relatively large number of pulses and a
large a priori interval of possible values of unknown
velocity meets difficulties related to strict require�
ments on the stability of the parameters of the delay
line and high accuracy of the positioning of leads that
provides the synchronous accumulation of pulses.

To simplify the implementation of the device for
measurement of distance and velocity, we consider the
possibility of determination of distance and velocity
using the estimated time positions of single pulses in
train (2):

(13)

Intensity of the detected signal (2) can be repre�
sented as

(14)

where

We assume that we know time intervals [tk – 1, tk] (the
kth repetition period) in which signals s(t – λ0k) are
localized. With allowance for expression (13), the esti�
mations of distance and velocity can be based on the
estimations of time positions λ0k that correspond to
the laser pulsed ranging Rk = cλ0k/2.

In accordance with the most�likelihood method,
estimations of time positions λ0k are based on the FLR
logarithm that is represented for each pulse (accurate
to insignificant terms) as [8]

(15)

For the estimation of time positions λ0k of single
pulses, we employ the positions of the greatest maxima
of decision statistics (15):

(16)

where

(17)

Here, [Λk min, Λk max] is the a priori interval of possible
values of time position λk of the kth pulse. We assume
that [Λk min, Λk max] ⊆ [tk – 1, tk]. We introduce addi�
tional notation

Thus, a relatively simple procedure can be used to
obtain the maximum�likelihood estimations of time
positions λ0k: it is suffice to employ a filter that is
matched with a single pulse of train (14) and, then,
find the positions of the absolute maxima of the out�
put signal of the matched filter at a priori intervals
[Λk min, Λk max].

In the presence of possible anomalous errors, esti�
mations (16) are characterized using probability den�
sities [11, 12, 14]:

(18)

where the Gaussian probability density of a reliable
estimation is written as [8, 11, 13]

(19)

Here,

 is the probability density of anomalous estima�
tion that is constant in a priori interval [Λk min, Λk max],
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and P0k is the probability of reliable estimation that is
given by [11, 13]

(20)

where

is the reduced length of a priori interval [Λk min, Λk max]
of the possible values of the time positions for the kth
pulse [11, 14]. It characterizes the number of optical
pulses that can be located in a priori interval

[Λk min, Λk max]. Quantities κ2, , and β2 are given by
expressions (7), (9), and (11), respectively.

The distribution of random quantity  can be
approximated using Gaussian distribution (19) pro�
vided that the following condition is satisfied [15]:

Here, τ is the equivalent duration of pulses of received
train (2).

For the conditional bias and spread of the estima�
tion of time positions (16), we have [14]

Quantities R0 and V0 can be estimated using estima�

tions of time positions  of single pulses. Formula (18)
shows that the probability densities of the estimations

of time positions  are not Gaussian. This circum�
stance impedes the synthesis of the quasi�optimal esti�
mation using expression (18). Therefore, we search for
the quasi�optimal estimation on the assumption of
Gaussian approximation (19) of distribution (18) that
is valid if P0k is close to unity. Thus, we use approxi�
mate formula (19) for the approximation of the condi�

tional probability density of random quantity .

A set of N independent random quantities  (16)
is used as the initial statistics for the quasi�optimal
estimations of quantities  and  The corresponding
likelihood function is written as

Accurate to insignificant constant terms, the loga�
rithm of the likelihood function is represented as

(21)

In accordance with the maximum�likelihood

method, estimations  and  of the parameters of
motion are the values at which function L(R, V) (21)
reaches maximum. Using the solution to the system of
likelihood equations

we find the quasi�optimal estimations of the distance
and velocity:

(22)

where

Such a quasi�optimal estimation algorithm can be
implemented using the block diagram of Fig. 1. The
input signal of the detector is a series of short pulses that
represent derivative π'(t) of a sample of Poisson random
process π(t). A series of pulses passes through filter Φ with
response function h(t) = h0ln(1 + s(t* – t)/ν), where h0 is
the filter gain and t* is the delay, such that t* > τ, where
τ is the duration of a single optical pulse with intensity
s(t). The output signal of the filter is multiplied by
function
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sequentially for all k = 0, …, N – 1. An extremator
determines the time position of the greatest maximum
of the signal at interval [Λk min, Λk max] (17) for the kth

input pulse and produces a series of estimations 
Computing device (CD) calculates the estimations of
distance and velocity using formulas (22). Figure 1
shows the single�channel implementation of the
receiver of the quasi�optimal algorithm for the estima�
tion of distance and velocity that differs from the
implementation of the maximum�likelihood receiver.

To calculate the accuracy characteristics of the
quasi�optimal estimations of distance and velocity, we

change random quantities  in formulas (22) by
conditional mathematical mean values and obtain
conditional mathematical means of estimations 

and  When true values λ0k are substituted for  in
formulas (22), we obtain true distances R0 and veloci�
ties V0, since the reliable estimations are unbiased.
Subtracting the first result from the second one, we
derive formulas for conditional biases of estimations 
and 

For the conditional spreads, we have

(23)

where l is the estimated parameter of motion (R or V)
and
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.

In a particular case, when true values R0 and V0
coincide with the centers of a priori intervals Rapr and
Vapr (i.e., R0 = Rapr and V0 = Vapr), formulas (32) are
simplified:

(24)

At a relatively high SNR (9), probability of reliable
estimations (20) is P0k ≈ 1 for each pulse of train (2).
Thus, expressions (23) for the spreads of quasi�opti�
mal estimations of distance and velocity are given by
expression (12) (i.e., coincide with the spreads of reli�
able maximum�likelihood estimations and, hence,
with the spreads of efficient estimations [1, 2, 4]).
Therefore, the asymptotic quasi�optimal estimations
are efficient when the SNR increases for each pulse.

In accordance with the results of [3, 4], a relatively
high accuracy of the maximum�likelihood estimations
of distance and velocity is reached at high SNRs

z2 =  (8) for entire train (2) even if SNR  (9) for
a single pulse is relatively low. In this regard, accuracy
of quasi�optimal estimations (22) may be significantly
less than the accuracy of maximum�likelihood estima�
tions (4). Indeed, anomalous errors of estimations (4)
of distance and velocity are almost absent if z2 (8) is rel�

atively high. At small values of  (9), we may obtain

anomalous errors of estimations  (16), that may lead
to a significant decrease in accuracy of estimations (22).

For the comparison of the characteristics of the
simultaneously efficient estimations, maximum�like�
lihood estimations, and quasi�optimal estimations, we
specify the intensity profiles of optical pulses and
present formulas for conditional normalized spreads
at R0 = Rapr and V0 = Vapr.

We assume that the intensity profile of a single pulse
of train (2) is represented using the Gaussian curve:

(25)
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Fig. 1. Block diagram of the quasi�optimal device for mea�
surement of distance and velocity.
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where

is the maximum pulse intensity and

is the equivalent pulse duration.
For the quasi�optimal estimations, the formulas for

conditional normalized spreads at R0 = Rapr and V0 =
Vapr are written in accordance with expression (24) as

(26)

In accordance with expression (5), the formulas for
conditional normalized spreads for the maximum�
likelihood estimations at R0 = Rapr and V0 = Vapr are
represented as

(27)

Assuming that P0 = 1 in expressions (27), we obtain the
normalized characteristics of reliable maximum�likeli�
hood estimations (12) that coincide with the characteris�
tics of the simultaneous efficient estimations [11, 14]:

(28)

In the expressions for normalized spreads of estima�
tions (26)–(28), we introduce notation
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located in the a priori interval of possible distances,
cτ is the spatial equivalent duration of a single pulse,

is the fraction of the spatial length of pulse that may be
equal to the displacement of target over the repletion
period of train (2),

is the signal�to�background ratio, and

is the mean number of signal points (photoelectrons)
that correspond to a single pulse.

To calculate probability of reliable estimation P0 in
expression (27), we must change quantity κ2 (7) in for�
mula (6) by the quantity
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and employ quantity z2 (8) under the condition that SNR  (9) is represented as

(31)

and quantity

Here, we have

For the calculation of probability of reliable esti�
mation P0k in expression (26), we must substitute
quantities (30) and (31) in formula (20) and assume
that

Figures 2–7 present the dependences of conditional
normalized biases bR and bV (expressions (26)–(28)) of
the estimations of distance and velocity on signal�to�
background ratio q at μ = 0. The solid lines show the
theoretical dependences for the quasi�optimal estima�
tion with allowance for anomalous errors (26), the
dashed lines correspond to maximum�likelihood esti�
mations with allowance for anomalous errors (27),
and the dashed�and�dotted lines correspond to simul�
taneous efficient estimation (28). The dots show the
results of the statistical simulation.

It is seen that the characteristics of quasi�optimal
estimations and maximum�likelihood estimations
coincide with the characteristics of the simultaneous
efficient estimations in the domain of reliable estima�

tion. This circumstance illustrates the asymptotic effi�
ciency of the quasi�optimal and the maximum�likeli�
hood methods. In the domain of anomalous errors, the
accuracy of the quasi�optimal estimation is signifi�
cantly less than the maximum�likelihood estimation.
Note that the asymptotic efficiency of the maximum�
likelihood estimations is reached at lower signal�to�
background ratios in comparison with the quasi�opti�
mal estimations.

The comparison of the results of Figs. 2 and 4 and
Figs. 3 and 5 shows that an increase in the number of
pulses in the sounding pulse train leads to an increase
in the estimation accuracy. Note a developed increase
in the velocity estimations. In addition, an increase in
the number of pulses does not lead to changes of the
domain of anomalous errors for the quasi�likelihood
method and a decrease in such a domain for the max�
imum�likelihood estimations. An increase in the
reduced length of the a priori interval of possible values
of distance mR does not cause variations in reliable
characteristics. However, an increase in the a priori
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Fig. 2. Normalized spreads of the estimations of distance
at N = 2, µS = 100, mR = 100, and mV = 1.
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Fig. 3. Normalized spreads of the estimations of velocity at
N = 2, µS = 100, mR = 100, and mV = 1.
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interval of possible distances results in an increase in
the domain of threshold effects for both quasi�optimal
and maximum�likelihood methods.

The above expressions for the characteristics of
quasi�optimal estimations are only asymptotically
accurate at relatively large parameters μS and mR. The
accuracies of the derived formulas can hardly be deter�
mined using analytical methods at finite values of the
parameters. In this regard, we employ the computer
statistical simulation to study the efficiency of the
quasi�optimal algorithm and determine the applica�
bility limits of the asymptotic expressions for the char�
acteristics of estimations of distance and velocity.

In the statistical simulation, we form discrete
samples of FLR logarithm (15) for each pulse with a
step of Δλ = τ/25. In this case, the integral in expres�
sion (15) is approximated using a finite sum of sam�
ples of the integrand with a step of Δt = τ/25. Poisson
process π(t) is formed using a conventional device that
generates independent random values uniformly dis�
tributed over interval [0, 1] for the intensity of process
s(t – λ0k) + ν, where quantity s(t) is given by formula (25).
For sampling interval Δλ = τ/2, the relative mean�

square error of approximation of FLR logarithm (15)
using step functions based on the corresponding sam�
ples is no greater than 2.5%. Using the position of the
greatest maximum of the approximation of FLR loga�

rithm (15), we determine estimation  (16) of the

time position of the kth pulse. A set of estimations 
is used to obtain quasi�optimal estimations of distance
and velocity (22). Then, we calculate selective normal�
ized spreads of estimations.

Size Ne of the experimental sample ranges from 103

to 5 × 103 depending on parameters q, μS, and mR.
Such sizes provide a mean�square error of experimen�
tal data of 10–20%. Figures 2–7 show that theoretical
dependences (26) of the spread of quasi�optimal esti�
mations of distance and velocity with allowance for
anomalous errors reasonably approximate the experi�
mental data at μS ≥ 10 and mR ≥ 10. Such lower limits
of the domain of applicability of the derived theoreti�
cal formulas for the characteristics of quasi�optimal
estimations can hardly be significantly improved.
Indeed, the theoretical and experimental data are
already in agreement at μS = 5.
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Fig. 6. Normalized spreads of the estimations of distance
at N = 2, µS = 10, mR = 10, and mV = 0.5.
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Fig. 7. Normalized spreads of the estimations of velocity at
N = 2, µS = 10, mR = 10, and mV = 0.5.
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Fig. 4. Normalized spreads of the estimations of distance
at N = 10, µS = 100, mR = 10, and mV = 1.
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Quasi�optimal estimations (22) and maximum�
likelihood estimations (4) are asymptotically efficient
when the SNR increases. Maximum�likelihood esti�
mations (4) are close to efficient estimations provided
that SNR (8) is relatively high for the entire train of
optical pulses with intensity (2). The quasi�optimal esti�
mation is close to the efficient estimation if SNR (9) is
relatively high for each pulse of the observed train of
optical pulses. Therefore, a significantly higher energy
of signal is needed for a high a posteriori accuracy of
the quasi�optimal estimations.

When the conditions for a relatively high a posteri�
ori accuracy of the estimations of time position of each
pulse are satisfied, a relatively simple quasi�optimal
algorithm (22) can be used instead of a difficult�to�
implement maximum�likelihood algorithm (4) almost
without loss of accuracy. In addition, algorithm (22)
can be used for the processing of the results in the
existing high�accuracy LIDARs to obtain additional
information on the velocity of target.
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