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Abstract – We have carried out the synthesis and analysis of the maximum likelihood and quasi-
likelihood algorithms in order to determine the number of radio signals, introducing and 
calculating the abridged probability of error in the assessment of the number of signals as the 
quantitative characteristic for the performance evaluation of these algorithms. The achieved 
analytical results lead us to the comparison between the characteristics of maximum likelihood 
and quasi-likelihood algorithms in determining the number of signals. We also consider the 
possibility for the application of the quasi-likelihood algorithm for the determination of the 
number of radio signals with partially unknown initial phases. Copyright © 2015 Praise Worthy 
Prize S.r.l. - All rights reserved. 
 
Keywords: Maximum Likelihood Estimation, Estimation of the Number of Signals, Error 

Probability, Signal with Unknown Phase, Quasi-Likelihood Estimation 
 
 

I. Introduction 
Dealing with information transfer and processing, we 

are often concerned with the problem of determining the 
number of the received signals. Thus, in case of 
multipath radio channel operation in MIMO systems [1], 
[2], the number of rays is, as a rule, a priori unknown, 
and it is to be determined. Also, for radar and acoustic 
radar (either active, or passive) sensing, it is a common 
situation when the number of signal sources located by 
the antenna array is unknown [3]-[6]. However, despite 
its occurrence, the problem of the determination of the 
number of the received signals is still only partially 
solved. In many cases difficulties arise while evaluating 
the determining algorithm structure. Practically, there are 
no results yet of the theoretical analysis of the 
performance quality evaluation concerning the 
algorithms determining the number of signals. 

Moreover, there is no universally adopted proper 
quantitative characteristic for the evaluation of the 
efficiency of such algorithms. 

In the absence of the quantitative characteristics for 
the algorithms determining the number of signals, the 
comparison between such algorithms and the choice of 
the most efficient of them are highly problematic. 

In paper [7], there are presented the modifications of 
the maximum likelihood method that provide us with the 
algorithm for the estimation of the number of signals 
with unknown amplitudes and its thorough study. 

Then, in study [8] the complicated algorithm is 
introduced, also based on the modifications of the 
maximum likelihood method. It is intended for the 
estimation of the number of radio signals with unknown 
amplitudes and phases. In [9] it has done a general study 
of determining the number of signals with known 
amplitudes and unknown non-energy parameters. 

Besides, for all algorithms synthesized in these 
researches, their basic characteristics are calculated. For 
the estimation of the number of signals in [7], [8], the 
modifications of the maximum likelihood method are 
used, and not the classical form of it, because one of the 
unknown signal parameters in question is amplitude.  

Indeed, as it is shown in [7], [8], in this very case the 
maximum likelihood method turns out to be inconsistent.  

But here we consider the situation when only the 
initial phases of the observable radio signals are 
unknown, and thus the maximum likelihood method 
tends to be applicable for estimating the number of 
signals. Besides the maximum likelihood estimation, we 
produce and study the quasi-likelihood estimation [10], 
as in practice the signal parameters can be only partially 
unknown. Under partially unknown signal parameter we 
mean the parameter for which true value is not exactly 
known, but some limited interval possessing this value 
can be specified. In other words, partially unknown 
signal parameter is identified only as belonging to some 
limited prior interval. Signal parameter value set with 
some known finite error is the example. 

In order to obtain the maximum likelihood estimation 
of the number of signals with unknown parameters, we 
should substitute the maximum likelihood estimates of 
these unknown parameters into the logarithm of the 
functional of likelihood ratio (FLR), at first. In case of 
estimating of the number of signals with partially 
unknown parameters, we suggest the quasi-likelihood 
algorithm [10]. 

For quasi-likelihood algorithm we substitute some 
expected values of these parameters from the appropriate 
prior intervals of their allowed values into the logarithm 
of FLR, instead of the values of partially unknown 
parameters. 
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Below we carry out the synthesis and analysis of the 
quasi-likelihood algorithm for the estimation of the 
number of radio signals with partially unknown phases 
against Gaussian white noise. 

We also conduct the synthesis and analysis of the 
maximum likelihood algorithm for estimating the 
number of signals with completely unknown phases 
possessing values within the prior interval 2π by length.  

Efficiency of each considered algorithm we will 
characterize by the probability of error in estimating the 
number of signals. 

For its definition we will use the abridged error 
probability [8]. 

II. The Synthesis and Analysis of the 
Quasi-Likelihood Algorithm for the 
Estimation of the Number of Radio 

Signals 
Let us suppose that over time interval  0,T  the sum 

of ν possible narrowband radio signals 
      i i i i i i is t , a f t cos t t      can be observed, 

so the set of signals: 
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can be passed to the measurer input. 

In Eq. (1) it is designated: 1
i ia , R   are amplitude 

and frequency,  0 2i ,   is possible phase, 

   1 0i t L ,T   is phase modulating function, 

   2 0if t L ,T  is envelope of the i-th signal, and 

1i i


   , 1 max,  . 

We designate the true number of signals as 0 . We 
also presuppose that the signal (1) be received against 
additive Gaussian white noise  n t  with one-sided 
spectral density 0N . 

Then, the following realization: 
 

         
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is accessible for the processing. Here 0i , 01i ,  are 
true signal phase values. 

In [11] the formula is made of the logarithm of FLR 
for arbitrary signal  s t ,l  containing unknown 
parameters l, when additive Gaussian white noise is an 
interference: 

        2

0 00 0

2 1   
T T

L l x t s t ,l dt s t ,l dt
N N

    (3) 

 
After substituting Eq. (1) in Eq. (3), we then rewrite 

the logarithm of FLR for the set of signals (1) as: 
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Further, we present the latter expression in this form: 
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 (4) 

 
where 1 max,  , and ijK  is dot product of radio signals 

 i is t ,  and  j js t , , so: 
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Now we are to consider the case when the signals in 

Eq. (1) satisfy to the bandlimitedness condition for all 
1 maxi ,  [11]: 

 1i i    (6) 
 

Here i  is i-th signal bandwidth. For this case the 
second summands in Eq. (5) are small in comparison 
with the first ones. It allows rewriting the expression (5) 
into: 
    ij cij i j sij i jK V cos V sin        (7) 
 
where: 
 

          
0

1   
2

T

cij i j i j i jV f t f t cos t t t dt      
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          
0

1     
2

T

sij i j i j i jV f t f t sin t t t dt      

 
After normalizing Eq. (7), we obtain the correlation 

coefficient of radio signals: 
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Here cij cij i jV E E  , sij sij i jV E E  , and 

i iiE K  is the i-th signal energy. We presuppose that 
radio signals (1) phases are partially unknown, i.e., there 
are only known the final prior intervals including the all 
possible values of the phases. While synthesizing the 
estimation algorithm of the number of signals, we will 
change the unknown values of phases 1

max
i i
   in Eq. (4) 

by their expected values 
1

max*
i i





 from the specified prior 

intervals: 
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where: 
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Using the decision statistics (9) we can write down the 

quasi-likelihood estimation algorithm of the number of 
signals in Eq. (2): 

 

   1 maxˆ arg sup L , ,


      (10) 

 
Let us consider the properties of the decision statistics 

(9). For this purpose we substitute the realization of the 
observable data (2) in Eq. (9): 
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Here: 
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i i i i i iN E n t f t cos t t dt      

 
are Gaussian random variables with zero mathematical 
expectations and unit dispersions, 0

*
i i i     is a 

parameter characterizing the deviation of the expected 
initial phases *

i  from their true values 0i , 
2 2

0 02i i iz a E N  is a signal-to-noise ratio (SNR) for i-th 
signal in Eq. (2). 

Efficiency of algorithm estimating the number of 
signals can be described by the error probability 

 0e ˆp p    . However, the calculation of this 
probability requires considerable computational 
resources. In order to obtain the simplified approximate 
formula for the error probability, we must have in mind 
that the any algorithm   estimating the number of 
signals can be presented as: 

 
  ˆ arg sup R ; x t


   

 
where   νR ; x t  is the functional defined by the 
structure of the algorithm   and depending upon the 
number of signals and the realization of the observable 
data. Accordingly, the error probability for the algorithm 
  can be written down in the kind of: 
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Now, as approximation for the error probability, we 

introduce the abridged error probability ap  for the 
algorithm   defined by the relation: 
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From the definition (13) follows that the abridged 

error probability is the lower bound for the error 
probability (12), when 01 max   . Also it should be 
noted that the abridged error probability coincides with 
the error probability in case when 3max   and 0 2  . 

In terms of the algorithm (10), we can rewrite Eq. (13) 
as: 

 

          0 0 0 01 1 1ap p L L ,L L            (14) 
 

Then, from formulas (11) and (14), we obtain the 
following presentation for the abridged error probability 

ap  in the algorithm (10): 
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  0 0 11ap p R, Q         (15) 

 
where: 
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Taking into account that 

0  and 
0 1   are Gaussian 

random variables with parameters  0 1,  and correlation 

coefficient  0 0 0 01 1       , and referring to Eqs. 

(15) and (16), we now find the formula for the 
calculation of the abridged error probability (13) for the 
algorithm (10): 
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here     2 2 2
x

x exp t dt 


    is the probability 

integral. Eq. (17) can be rather universally applied, as it 
enables us to study both the situations when all the initial 
phases are known with only the limited accuracy and also 
the situations when initial phases are all a priori exactly 
known for some signals presented in Eq. (1). 

Assuming in Eq. (15) that 0i   for all 1 maxi , , 
from Eq. (17) we obtain the expression for the abridged 
error probability for the maximum likelihood estimate of 
the number of radio signals with a priori exactly known 
initial phases shown in the following Eq. (18) [7], [8]: 
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III. The Synthesis and Analysis of the 
Maximum Likelihood Algorithm for 

the Estimation of the Number  
of Radio Signals 

Let us suppose that initial signal phases in Eq. (1) are 
totally unknown, i.e. they can possess any values from 
the prior interval with the length 2 . 

We impose the orthogonality condition on to functions 
from the set    1

max
i i i

s t , 



: 
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Then Eq. (4) has the appearance: 
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Further, we rewrite the formula (20) as: 
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Here the following designations are introduced: 
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In the logarithm of FLR (21) we change the unknown 

phases by their maximum likelihood estimates. 
This procedure is reduced to the maximization of the 

logarithm of FLR (21) on unknown phases: 
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Using the statistics (22), we can write down the 

maximum likelihood algorithm for the estimation of the 
number of signals (1) as: 

 
  1ˆ arg sup L


   (23) 
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Let us consider the properties of the statistics (22) and 
substitute the realization of the observable data (3) in Eq. 
(22). Then we have the following Eq. (24): 

 

 

 
 

 
 

 

0

0

2
0 2

02
1 0

2
0 21

2
1 0

2 2 2
0

1

2

2

2   

i i ci
i i

i i i si

i i ci
i i

i i i si

i ci si i
i

z cos
z z

z sin

z cosL z z
z sin

z z ,









 
 

 

 

 

   





 

                 
                   


   








 

 
Here: 
 

      
0 0

2ξ   ω  
T

ci i i i
i

n t f t cos t t dt
N E

   

 

      
0 0

2ξ   ω  
T

si i i i
i

n t f t sin t t dt
N E

   

 
are mutually independent Gaussian random variables 
with parameters (0,1). Using the formula (24), we can 
calculate the abridged error probability (13) for the 
algorithm (23): 
 

 
 

0 0 0

0

0 0 0

0 0 0 0

0

2
0

2
0

2 2 2
φ 1 1 1

2
1

1 2 0 

2 0

c

s

a c s

z cos
z

z sin

p p z ,z

z

  


  

   



 

 

   



 
  

 
  
 
       
 
   

 

 
After simple transformations and taking into account 

the independence of random variables 
0c , 

0s , 
0 1c  , 

0 1s  , this formula can be rearranged into the form: 
 

 

 

   

 

0 0 0

0 0 0 0

0 0 0

2
0

2 2
0

22 2
1 1 1

1  

2

2
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s

c s

p p z cos

z sin z

p z

   

   

  

 

 

   

   
   

     

 (25) 

 
The random variable: 
 

   0 0 0 0 0 0

2 2
0 0c sz cos z sin            

 

has non-central distribution of 2  with the two degrees 

of freedom and with non-centrality parameter 

   0 0 0 0

2 2 2
0 0 iz cos z sin z      . 

Therefore, the abridged error probability ap  (25) 
does not depend on the value 

00 . Assuming that in Eq. 

(25) 
00 4   is for definiteness, we obtain Eq. (26): 

 

0 0 0
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0
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 

 

                       
       

   
                      
               

 

 
here: 
 

     2
0

0

1 2 0
2

0 0

x

exp y I y dy, x
F x,

, x

 



      




  

 
is the distribution function of the non-central 2  with 
the two degrees of freedom and with non-centrality 
parameter 2  [12],  0I   is the modified zero-order 
Bessel function of the first kind, while: 
 

   0 0F x F x,  
 

is the distribution function of the central 2  with two 
degrees of freedom [12]. 

IV. The Analysis of the Estimates of the 
Number of Harmonic Radio Signals 

Let us consider the special case when all functions 
from the set    1

max
i i

f t 


 are identically equal to the unit 

within the interval  0,T , and phase modulation is 
absent. Then radio signals in Eq. (1) represent the 
harmonic oscillations segments. We are also to 
presuppose that the equality k k    holds for any 

1 maxk , , where ω is a real number. 
If signals in Eq. (1) satisfy the bandlimitedness 

condition, then the expression (8) for correlation 
coefficient between i-th and j-th signals will write down 
as: 

 

   
     

     2

2 2ij i j

i j

cos sin i j B i j B

sin sin i j B i j B

    

   

      

     
 (27) 
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where 2B T  . 
As follows from Eq. (27), the value B determines the 

correlation coefficient between the signals. For example, 
if 1i j  , 0 0 0i j    and 0 3B . , then 12 0 5.  , 
and for sufficiently great values of B, for example, 

15B  , the signals in Eq. (1) are orthogonal practically. 
Besides, we assume that for any i: iz z , i    and 

for any i, j: 0 0 0i j   . 
Then we should substitute the following expressions 

in Eq. (17): 
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 
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

 
       

 
 

      
 

 

 

   (28) 

 
instead of Eq. (16). 

For the further evaluation of the formulas (17) and 
(28), we presuppose that 0ν 2 , ν 3max  , so formulas 
(17), (28) get the appearance: 

 

 
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23
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0 23
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22 1
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a
R yyp z,B, exp dy
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 
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 (29) 
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 
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 



 
 (30) 

 
We choose the value  g   to describe the 

deterioration of quality in estimating the number of 
signals, due to the deviation of the expected values of 
phases from the true ones. 

This value is determined as the relation of the 
abridged error probability in the case of the deviation of 
expected values of signal phases from their true values 

 ap z,B,  (29) to the abridged error probability in 
presence of the exactly known signal phases 0ap  (18): 

 
    0a ag p z,B, p     

 
In Fig. 1 the dependences of the function  g   

upon parameter Δ are presented under SNR 4z   and 
with various values of the parameter B: curve 1 
corresponds to 0 3B . , 2 – 2 3B . , 3 – 16B  .  

Comparison of curves 1-3 shows the relative 
deterioration of the performance for the quasi-likelihood 
algorithm estimating the number of signals, in 

comparison with the maximum likelihood algorithm 
estimating the number of radio signals with a priori 
known amplitudes and phases with decreasing B, i.e. 
with the signal correlation score in Eq. (1) increasing. 

In Fig. 2 the dependences of the function  g   in 
case of orthogonal signals ( 16B  ) are drawn for 
various SNR values z. The curve 1 corresponds to 3z  , 
2 – 4z  , 3 – 5z  , 4 – 6z  , 5 – 7z  , 6 – 8z  . 

Comparison of curves 1-6 shows the relative 
deterioration of the performance for the quasi-likelihood 
algorithm estimating the number of signals, in 
comparison with the maximum likelihood estimation 
algorithm with SNR increasing. 

 

 
 

Fig. 1. The minimum gain for comparison 
of various feed arrangements 

 

 
 

Fig. 2. The minimum gain for comparison 
of various feed arrangements 

 
Further, we carry out the comparison of the quasi-

likelihood (10) and maximum likelihood (23) algorithms 
for the estimation of the number of signals. For this 
purpose we introduce the value: 

 

   a aq p p z,     
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Here ap  is defined from Eq. (26), and  ap z,  – 
from Eq. (29) under 1B  , i.e. if 23 0   (the 
condition is fulfilled when 15B  , it is quite enough in 
practice). The value q  shows, how many times the error 
probability for the quasi-likelihood algorithm (10) is less 
than the corresponding error probability for the 
maximum likelihood algorithm (24). 

Dependences q  from value Δ are represented in Fig. 
3 for various SNR values: curve 1 corresponds to SNR 

3z  , 2 – 4z  , 3 – 5z  , 4 – 6z  , 5 – 8z  . 
 

 
 

Fig. 3. The minimum gain for comparison 
of various feed arrangements 

 
From the analysis of these curves follows that under 

0 4.   the error probability for the quasi-likelihood 
estimation algorithm will be 4-6 times less (depending on 
SNR), than the one for the maximum likelihood 
estimation algorithm. 

Therefore, if initial phases of radio signals are a priori 
known with the error of no more than 20 , then the 
application of the quasi-likelihood algorithm increases 
the efficiency of the estimation of the number of radio 
signals, in comparison with the efficiency of this 
procedure demonstrated by the maximum likelihood 
algorithm. 

V. Conclusion 
The introduced abridged error probability for the 

estimation of the number of signals allows us to 
characterize quantitatively the efficiency of the various 
algorithms generated for this task. The obtained results 
make it possible to decide between quasi-likelihood and 
maximum likelihood estimates of the number of signals 
with unknown phases. 

We have shown that, for the sufficiently small lengths 
of the prior intervals of the allowed values of the 
unknown initial signal phases, the quasi-likelihood 
estimate of the number of signals can have the better 
characteristics in comparison with the corresponding 
maximum likelihood estimate. 
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