Входит в состав базы Russian Science Citation Index (RSCI) на платформе Web of Science

ISSN 0033-8486

XXI век

Radioengineering ·

2 2016

В номере:

РАДИОСИСТЕМЫ

Выпуск 199

Территориально распределенные системы охраны, № 14

Выпуск 200

Синтез и анализ алгоритмов и устройств обработки сигналов, № 1

тел./факс: (495) 625-9241 e-mail: info@radiotec.ru http://www.radiotec.ru

ПОДПИСНОЙ ИНДЕКС 70775 В КАТАЛОГЕ АГЕНТСТВА «РОСПЕЧАТЬ»: ГАЗЕТЫ И ЖУРНАЛЫ

УДК 621.391

Эффективность обнаружения радиосигнала с неизвестными параметрами

© Авторы, 2016

© ЗАО «Издательство «Радиотехника», 2016

А.П. Трифонов – д.т.н., Засл. деятель науки, профессор, зав. кафедрой радиофизики, Воронежский государственный университет

E-mail: trifonov@phys.vsu.ru

Е.В. Литвинов – к.ф.-м.н., ассистент, кафедра радиофизики, Воронежский государственный университет E-mail: elitvinov@list.ru

Найдены характеристики алгоритма обнаружения радиосигнала, имеющего симметричную огибающую произвольной формы и неизвестные длительность, амплитуду и начальную фазу, с учетом краевых эффектов на границе априорной области неизвестных параметров. Исследовано влияние учета краевых эффектов на точность вычисления характеристик алгоритма обнаружения посредством статистического моделирования на ЭВМ алгоритма обнаружения радиосигнала колокольной формы.

Ключевые слова: радиосигнал, огибающая, обнаружение, максимально правдоподобный алгоритм, краевые эффекты, моделирование на ЭВМ.

Expressions of detection algorithm characteristics of symmetrical general form radio-signal are founded when amplitude, duration and phase of the signal are unknown and side effects on the boundary of a priori area are considered. The influence of boundary effects of a priori area on precision of evaluation of detection algorithm characteristics are investigated by means of statistical computer modeling of bell-like signal detection algorithm.

Keywords: radio-signal, general, detection, maximum likelihood algorithm, boundary effects statistical computer modeling.

В процессе функционирования различных радиоэлектронных систем локации, навигации и связи возникает необходимость в обнаружении сигналов с неизвестными параметрами, наблюдаемых на фоне помех [1–3]. В частности, при неизвестном расстоянии до цели неизвестно время прихода сигнала. Если при этом неизвестны размеры цели, также оказывается неизвестной и длительность обрабатываемого сигнала.

В работе [2] исследовались характеристики синтезированного по методу максимального правдоподобия алгоритма обнаружения квазидетерминированного радиосигнала вида

$$s(t) = a_0 f\left[(t - \lambda_0) / \tau_0 \right] \cos(\omega_0 t - \phi_0), \qquad (1)$$

где λ_0 – время прихода; τ_0 – эквивалентная длительность; a_0 – амплитуда; ω_0 – частота; ϕ_0 – начальная фаза радиосигнала; f(x) – функция, определяющая форму огибающей радиосигнала и имеющая следующие свойства:

$$\sup f(x) = 1, \quad \int_{-\infty}^{\infty} f^{2}(x) dx = 1, \quad \left| df(x) / dx \right| << \omega_{0} \tau_{0} f(x).$$
(2)

В [2] предполагалось, что радиосигнал (1) наблюдается на фоне гауссовского белого шума n(t) с односторонней спектральной плотностью N_0 , а время прихода λ_0 , длительность τ_0 , амплитуда a_0 и начальная фаза ϕ_0 радиосигнала априори неизвестны. Были получены асимптотические выражения для характеристик алгоритма обнаружения (вероятности ложной тревоги и пропуска сигнала), не учитывающие возможные пересечения границ априорной области выбросами решающей статистики за порог обнаружения. Точность полученных соотношений зависит от выбранного порога и размеров априорной области и возрастает с ростом порога и увеличением размеров априорной области по каждому из неизвестных параметров. В [2] приведены также результаты моделирования на ЭВМ алгоритма обнаружения сигнала колокольной формы, согласно которым теоретические зависимости вероятности ложной тревоги от порога удовлетворительно согласуются с экспериментальными данными, если приведенный объем априорной области времени прихода и длительности составляет несколько десятков. На практике это условие выполняется не всегда, поэтому представляет интерес нахождение выражений для характери-

стик алгоритма обнаружения радиосигнала (1), учитывающих конечный размер априорной области неизвестных параметров и возможные пересечения границ этой области выбросами решающей статистики.

В дальнейшем положим, что возможные значения времени прихода λ_0 и длительности τ_0 принимают значения из априорных интервалов $\lambda \in [\Lambda_1; \Lambda_2], \tau \in [T_1; T_2]$, а функция f(x) является четной:

$$f(x) = f(-x). \tag{3}$$

Цель работы – найти асимптотические выражения для вероятностей ошибок 1-го и 2-го рода (вероятности ложной тревоги и пропуска сигнала), возникающих при обнаружении радиосигнала (1) в соответствии с алгоритмом обнаружения, приведенным в [2]. С целью установления границ применимости полученных в работе асимптотически точных формул проведено статистическое моделирование алгоритма обнаружения на ЭВМ.

Описание алгоритма обнаружения

Пусть в течение времени [0;T] на вход приемника поступает реализация смеси сигнала и шума x(t) = s(t) + n(t) или только шума x(t) = n(t), причем сигнал s(t) и шум n(t) статистически независимы.

Согласно [1, 2], для обнаружения сигнала (1) по методу максимального правдоподобия необходимо формировать функционал

$$M(\lambda,\tau) = \left[R_s^2(\lambda,\tau) + R_c^2(\lambda,\tau) \right] / 2 \quad , \tag{4}$$

где

$$R_{s}(\lambda,\tau) = \frac{\sqrt{2}\int_{0}^{T} x(t) f\left[(t-\lambda)/\tau\right] \sin(\omega_{0}t) dt}{\sqrt{E(\lambda,\tau)N_{0}}}; R_{c}(\lambda,\tau) = \frac{\sqrt{2}\int_{0}^{T} x(t) f\left[(t-\lambda)/\tau\right] \cos(\omega_{0}t) dt}{\sqrt{E(\lambda,\tau)N_{0}}};$$

$$E(\lambda,\tau) = \int_{0}^{T} f^{2}\left[(t-\lambda)/\tau\right] dt/2, \qquad (5)$$

и сравнивать величину его абсолютного (наибольшего) максимума с порогом, выбранным в соответствии с заданным критерием оптимальности обнаружения [1]. Решение о наличии полезного сигнала (1) в наблюдаемых данных принимается, если абсолютный максимум функционала (4) превысил порог h(гипотеза H_1), иначе выносится решение об отсутствии сигнала (гипотеза H_0):

$$\sup_{(\lambda,\tau)\in\Pi} M(\lambda,\tau) > h \implies H_1, \quad \sup_{(\lambda,\tau)\in\Pi} M(\lambda,\tau) < h \implies H_0.$$
(6)

Здесь $\Pi \in [\Lambda_1; \Lambda_2][T_1; T_2]$ – априорная область возможных значений времени прихода λ_0 и длительности τ_0 .

Расчет характеристик алгоритма обнаружения

При анализе алгоритма обнаружения (6) будем считать, что время наблюдения *T* достаточно велико, так что радиосигнал (1) полностью расположен внутри интервала наблюдения [0;T]. В частности, для этого необходимо выполнение условий $\Lambda_2 - \Lambda_1 >> T_2$ и $T - \Lambda_2 >> T_2$. Тогда пределы интегрирования в (5) можно заменить на бесконечные, так что

$$R_{s}(\lambda,\tau) \approx \frac{2\int_{-\infty}^{\infty} x(t) f\left(\frac{t-\lambda}{\tau}\right) \sin(\omega_{0}t) dt}{\sqrt{\tau N_{0}}}, R_{c}(\lambda,\tau) \approx \frac{2\int_{-\infty}^{\infty} x(t) f\left(\frac{t-\lambda}{\tau}\right) \cos(\omega_{0}t) dt}{\sqrt{\tau N_{0}}}, E(\lambda,\tau) \approx \tau/2.$$
(7)

Заметим, что функция $E(\lambda, \tau)$ характеризует долю энергии сигнала (1) единичной амплитуды, сосредоточенную в интервале [0;*T*] и, согласно (7), не зависит от параметра λ , так что этот параметр можно считать неэнергетическим [4].

Пусть справедлива гипотеза H_0 об отсутствии сигнала в наблюдаемых данных x(t). Тогда вероятность ложной тревоги определяется выражением

$$\alpha = P\left[\sup_{(\lambda,\tau)\in\Pi} M(\lambda,\tau) > h \middle| H_0\right] \approx P\left[\sup_{(\lambda,\tau)\in\Pi} M_0(\lambda,\tau) > 2h\right] = P\left\{\sup_{(\lambda,\tau)\in\Pi} \left[R_{0s}^2(\lambda,\tau) + R_{0c}^2(\lambda,\tau)\right] > 2h\right\},\tag{8}$$

где

$$M_0(\lambda,\tau) = R_{0s}^2(\lambda,\tau) + R_{0c}^2(\lambda,\tau);$$
⁽⁹⁾

 $R_{0s}(\lambda, \tau)$, $R_{0c}(\lambda, \tau)$ – функционалы, определяемые выражениями (7), при отсутствии сигнала:

$$R_{0s}(\lambda,\tau) = \frac{2\int_{-\infty}^{\infty} n(t) f\left(\frac{t-\lambda}{\tau}\right) \sin(\omega_0 t) dt}{\sqrt{\tau N_0}}, \ R_{0c}(\lambda,\tau) = \frac{2\int_{-\infty}^{\infty} n(t) f\left(\frac{t-\lambda}{\tau}\right) \cos(\omega_0 t) dt}{\sqrt{\tau N_0}}.$$

Функционалы $R_{0s}(\lambda, \tau)$ и $R_{0c}(\lambda, \tau)$ представляют собой центрированные неоднородные гауссовские случайные поля с корреляционными функциями

$$B_{0c}\left(\lambda_{1},\tau_{1},\lambda_{2},\tau_{2}\right) = \left\langle R_{0c}\left(\lambda_{1},\tau_{1}\right)R_{0c}\left(\lambda_{2},\tau_{2}\right)\right\rangle = 2\int_{-\infty}^{\infty} f\left(\frac{t-\lambda_{1}}{\tau_{1}}\right)f\left(\frac{t-\lambda_{2}}{\tau_{2}}\right)\cos^{2}\left(\omega_{0}t_{1}\right)dt \left/\sqrt{\tau_{1}\tau_{2}}\right. = \\ = \int_{-\infty}^{\infty} f\left(\frac{t-\lambda_{1}}{\tau_{1}}\right)f\left(\frac{t-\lambda_{2}}{\tau_{2}}\right)\left[1+\cos(2\omega_{0}t)\right]dt \left/\sqrt{\tau_{1}\tau_{2}}\right.$$
(10a)
$$B_{0s}\left(\lambda_{1},\tau_{1},\lambda_{2},\tau_{2}\right) = \left\langle R_{0s}\left(\lambda_{1},\tau_{1}\right)R_{0s}\left(\lambda_{2},\tau_{2}\right)\right\rangle = 2\int_{-\infty}^{\infty} f\left(\frac{t-\lambda_{1}}{\tau_{1}}\right)f\left(\frac{t-\lambda_{2}}{\tau_{2}}\right)\sin^{2}\left(\omega_{0}t_{1}\right)dt \left/\sqrt{\tau_{1}\tau_{2}}\right. = \\ = \int_{-\infty}^{\infty} f\left(\frac{t-\lambda_{1}}{\tau_{1}}\right)f\left(\frac{t-\lambda_{2}}{\tau_{2}}\right)\left[1-\cos(2\omega_{0}t)\right]dt \left/\sqrt{\tau_{1}\tau_{2}}\right.$$
(105)

где $\langle \bullet \rangle$ означает усреднение по реализациям шума n(t).

При выполнении условий (2) и (3) корреляционные функции $B_{0c}(\lambda_1, \tau_1, \lambda_2, \tau_2)$ и $B_{0s}(\lambda_1, \tau_1, \lambda_2, \tau_2)$ приближенно совпадают, зависят от разности аргументов λ_2 и λ_1 и определяются выражением

$$B_{0c}\left(\lambda,\tau_{1},\lambda+\Delta,\tau_{2}\right) \approx B_{0s}\left(\lambda_{1},\tau_{1},\lambda+\Delta,\tau_{2}\right) \approx B_{0}\left(\Delta,\tau_{1},\tau_{2}\right) = \int_{-\infty}^{\infty} f\left(t/\tau_{1}\right) f\left[\left(t-\Delta\right)/\tau_{2}\right] dt \left/\sqrt{\tau_{1}\tau_{2}}\right].$$
(11)

Заметим, что в этом случае дисперсия полей $R_{0s}(\lambda, \tau)$ и $R_{0c}(\lambda, \tau)$ постоянна и равна 1.

Для вычисления вероятности ложной тревоги (8) воспользуемся эвристическим методом, предложенным в [5], и учитывающим возможные пересечения выбросами неоднородного случайного поля, распределенного по закону χ^2 , границ области его определения. Согласно (9), (11) при выполнении (2) и (3) случайное поле $M_0(\lambda, \tau)$ распределено по закону χ^2 с двумя степенями свободы и неоднородно по параметру τ , определяющему эквивалентную длительность огибающей сигнала (1), а поля $R_{0s}(\lambda, \tau)$ и $R_{0c}(\lambda, \tau)$ дважды непрерывно дифференцируемы почти наверное по параметрам λ и τ . Кроме того, при фиксированном параметре $\tau = \tilde{\tau}$ и выполнении условий (2) и (3) случайный процесс $M_0(\lambda, \tilde{\tau})$ стациона-

рен по параметру λ . Это позволяет воспользоваться результатами [5] для расчета среднего значения эйлеровой характеристики выбросов случайного поля $M_0(\lambda, \tilde{\tau})$ за уровень *h*, а, следовательно, и вероятности ложной тревоги (8).

Пусть $\Pi_b = [(\lambda, \tau) \in \Pi : M_0(\lambda, \tau) > b]$ – множество выбросов случайного поля $M_0(\lambda, \tau)$ (9) за порог b. Согласно [6], при достаточно большом пороге b вероятность превышения этого порога абсолютным максимумом случайного поля $M_0(\lambda, \tau)$ приближенно совпадает со средним значением эйлеровой характеристики $\psi(\Pi_b)$ множества выбросов этого поля:

$$P\left[\sup_{(\lambda,\tau)\in\Pi} M_0(\lambda,\tau) > b\right] \approx \langle \psi(\Pi_b) \rangle.$$
(12)

В соответствии с [5] для среднего значения эйлеровой характеристики $\psi(\Pi_{2h})$ случайного поля $M_0(\lambda, \tau)$, определяемого соотношениями (9), (11) и распределенного по закону χ^2 с двумя степенями свободы v = 2, можем записать

$$\left\langle \psi\left(\Pi_{2h}\right)\right\rangle = V_1\left(\Pi_{\lambda}\right)\rho_1\left(2h,\Pi_{\tau}\right) + V_0\left(\Pi_{\lambda}\right)\rho_0\left(2h,\Pi_{\tau}\right).$$

$$\tag{13}$$

Здесь $\Pi_{\lambda} = [\Lambda_1; \Lambda_2]$, $\Pi_{\tau} = [T_1; T_2]$ – области возможных значений времени прихода λ и длительности τ соответственно; $V_1(\Pi_{\lambda}) = \Lambda_2 - \Lambda_1$, $V_0(\Pi_{\lambda}) = \psi(\Pi_{\lambda}) = 1$ – функционалы Минковского области Π_{λ} ; ρ_0, ρ_1 – интенсивности эйлеровой характеристики размерностей 0 и 1:

$$\rho_0(2h,\Pi_\tau) = \exp\left(-h\right) \left[1 + \sqrt{\frac{h\kappa}{\pi}} \ln\left(\frac{T_2}{T_1}\right) \right], \quad \rho_1(2h,\Pi_\tau) = \sqrt{\frac{h\gamma}{\pi}} \frac{\exp\left(-h\right)}{2} \left[\left(\frac{1}{T_1} + \frac{1}{T_2}\right) + \sqrt{\frac{\kappa}{\pi h}} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) (2h-1) \right]; \quad (14)$$

 γ , κ – величины, характеризующие кривизну корреляционной функции в окрестности ее максимума по соответствующим параметрам:

$$\gamma = -\tau^{2} \left[\frac{\partial^{2} B_{0}(\Delta, \tau_{1}, \tau_{2})}{\partial \Delta^{2}} \right]_{\Delta=0, \tau_{1}=\tau_{2}=\tau} = \int_{-\infty}^{\infty} \left[\frac{df(x)}{dx} \right]^{2} dx,$$

$$\kappa = \tau^{2} \left[\frac{\partial^{2} B_{0}(\Delta, \tau_{1}, \tau_{2})}{\partial \tau_{1} \partial \tau_{2}} \right]_{\Delta=0, \tau_{1}=\tau_{2}=\tau} = \int_{-\infty}^{\infty} \left[x \frac{df(x)}{dx} + \frac{f(x)}{2} \right]^{2} dx.$$
(15)

Подставляя (14), (15) в (13), а затем с учетом (12) в (8) и ограничивая полученное выражение сверху значением 1, для вероятности ложной тревоги можем записать

$$\alpha \approx P \left[\sup_{(\lambda,\tau)\in\Pi} M_0(\lambda,\tau) > 2h \right] = \\ = \min\left(1, \exp\left(-h\right) \left\{ \sqrt{\frac{h\gamma}{4\pi}} \left[\left(\frac{1}{T_1} + \frac{1}{T_2}\right) + \sqrt{\frac{\kappa}{\pi h}} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) (2h-1) \right] (\Lambda_2 - \Lambda_1) + \left[1 + \sqrt{\frac{h\kappa}{\pi}} \ln\left(\frac{T_2}{T_1}\right) \right] \right\} \right].$$
(16)

Точность выражения (16) увеличивается с ростом порога обнаружения h и не зависит от размера априорной области возможных значений времени прихода и длительности. В частности, полагая $\Lambda_1 = \Lambda_2 = \lambda_0$ и $T_1 = T_2 = \tau_0$, из соотношения (16) нетрудно получать частные выражения для вероятности ложной тревоги при обнаружении сигнала (1) с неизвестными амплитудой, временем прихода и начальной фазой, или амплитудой, длительностью и начальной фазой или только с неизвестными амплитудой и начальной фазой.

Сравним выражение для вероятности ложной тревоги (16) с результатом, полученным в [1, 2]. Согласно [2], вероятность ложной тревоги при обнаружении сигнала (1) определяется выражением

$$\tilde{\alpha} \approx \begin{cases} 1 - \exp\left[-\xi h \exp\left(-h\right)/\pi^2\right], & h \ge 1; \\ 1, & h < 1. \end{cases}$$
(17)

Здесь ξ – приведенный объем априорной области возможных значений времени прихода, длительности и фазы:

$$\xi = \int_{\Lambda_1}^{\Lambda_2} \int_{T_1 - \pi}^{T_2} d(\lambda, \tau, \phi) d\lambda d\tau d\phi, \qquad (18)$$

$$d^{2}(\lambda,\tau,\phi) = \begin{vmatrix} \frac{\partial^{2}B(\vec{\eta}_{1},\vec{\eta}_{2})}{\partial\lambda_{1}\partial\lambda_{2}} & \frac{\partial^{2}B(\vec{\eta}_{1},\vec{\eta}_{2})}{\partial\tau_{1}\partial\lambda_{2}} & \frac{\partial^{2}B(\vec{\eta}_{1},\vec{\eta}_{2})}{\partial\phi_{1}\partial\lambda_{2}} \\ \frac{\partial^{2}B(\vec{\eta}_{1},\vec{\eta}_{2})}{\partial\lambda_{1}\partial\tau_{2}} & \frac{\partial^{2}B(\vec{\eta}_{1},\vec{\eta}_{2})}{\partial\tau_{1}\partial\tau_{2}} & \frac{\partial^{2}B(\vec{\eta}_{1},\vec{\eta}_{2})}{\partial\phi_{1}\partial\tau_{2}} \\ \frac{\partial^{2}B(\vec{\eta}_{1},\vec{\eta}_{2})}{\partial\lambda_{1}\partial\phi_{2}} & \frac{\partial^{2}B(\vec{\eta}_{1},\vec{\eta}_{2})}{\partial\tau_{1}\partial\phi_{2}} & \frac{\partial^{2}B(\vec{\eta}_{1},\vec{\eta}_{2})}{\partial\phi_{1}\partial\phi_{2}} \\ \frac{\lambda_{1}=\lambda_{2}=\lambda,}{\rho_{1}=\sigma_{2}=\phi,} \end{aligned}$$
(19)

где $\vec{\eta}_i = \|\lambda_i, \tau_i, \phi_i\|, i = 1, 2;$

$$B\left(\vec{\eta}_{1},\vec{\eta}_{2}\right) = \left\{ \int_{-\infty}^{\infty} f\left(\frac{t-\lambda_{1}}{\tau_{1}}\right) f\left(\frac{t-\lambda_{2}}{\tau_{2}}\right) dt \right\} \cos(\phi_{2}-\phi_{1}) / \sqrt{\tau_{1}\tau_{2}} = B_{0}\left(\lambda_{1},\tau_{1},\lambda_{2},\tau_{2}\right) \cos(\phi_{2}-\phi_{1}), \tag{20}$$

а функция $B_0(\lambda_1, \tau_1, \lambda_2, \tau_2)$ определена в (11).

Подставляя (20) в (19), производя дифференцирование по ϕ_1 и ϕ_2 и полагая $\phi_1 = \phi_2 = \phi$, для величины $d(\lambda, \tau, \phi)$ можем записать

$$d^{2}(\lambda,\tau,\phi) = \tilde{d}^{2}(\lambda,\tau) = \left\{ \frac{\partial^{2}B_{0}(\lambda_{1},\tau_{1},\lambda_{2},\tau_{2})}{\partial\lambda_{1}\partial\lambda_{2}} \cdot \frac{\partial^{2}B_{0}(\lambda_{1},\tau_{1},\lambda_{2},\tau_{2})}{\partial\tau_{1}\partial\tau_{2}} - \left[\frac{\partial^{2}B_{0}(\lambda_{1},\tau_{1},\lambda_{2},\tau_{2})}{\partial\lambda_{1}\partial\tau_{2}} \right]^{2} \right\}_{\substack{\lambda_{1}=\lambda_{2}=\lambda,\\\tau_{1}=\tau_{2}=\tau.}}$$
(21)

При выполнении (3) $\partial^2 B_0(\lambda_1, \tau_1, \lambda_2, \tau_2) / \partial \lambda_1 \partial \tau_2 = 0$. Подставляя (15) в (21), а затем в (18) и производя интегрирование, выразим параметр ξ через параметры γ и κ (15):

$$\xi = \left(\Lambda_2 - \Lambda_1\right) \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \pi \sqrt{\gamma \kappa} .$$
⁽²²⁾

Положим, что порог обнаружения *h* достаточно высок. Тогда, раскладывая в (17) экспоненту в ряд Маклорена и учитывая только два первых члена разложения, выражение для вероятности ложной тревоги можно записать в виде

$$\tilde{\alpha} \approx \begin{cases} \xi h \exp(-h) / \pi^2, & h \ge 1; \\ 1, & h < 1. \end{cases}$$
(23)

Используя (22), перепишем выражение для вероятности ложной тревоги (16) в виде

$$\alpha \approx \min\left(1, \frac{\xi h \exp(-h)}{\pi^2} \times \left\{1 + \frac{1}{\xi} \sqrt{\frac{\pi^3}{h}} \left[\frac{\sqrt{\gamma}}{2} \left(\frac{1}{T_1} + \frac{1}{T_2}\right) (\Lambda_2 - \Lambda_1) + \sqrt{\kappa} \ln\left(\frac{T_2}{T_1}\right)\right] + \frac{\pi^2}{h\xi} - \frac{1}{2h}\right\}\right).$$
(24)

Из сравнения (23) и (24) следует, что относительное отклонение $\chi = (\alpha - \tilde{\alpha})/\tilde{\alpha}$ вероятности ложной тревоги α (16), рассчитанное с учетом возможных пересечений выбросами случайного поля $M_0(\lambda, \tau)$ границ априорной области П, от вероятности ложной тревоги $\tilde{\alpha}$ (23), рассчитанной без учета этих пере-

сечений, определяется четырьмя слагаемыми, пропорциональными $\sqrt{\pi^3 \gamma/\xi^2 h}$, $\sqrt{\pi^3 \kappa/\xi^2 h}$, $1/h\xi$ и 1/h. При $h \to \infty$ влиянием этих слагаемых на вероятность ложной тревоги в (24) можно пренебречь, так что соотношения (23) и (24) асимптотически совпадают. Однако, при конечных порогах h влияние этих слагаемых на величину вероятности ложной тревоги в (24) оказывается довольно существенным, причем оно может увеличиваться как с ростом априорной области П, так и с ростом параметров γ и κ (15), характеризующих кривизну корреляционной функции (11) случайных полей $R_{0s}(\lambda, \tau)$ и $R_{0c}(\lambda, \tau)$ (9) в окрестности их максимума.

Для расчета вероятности пропуска сигнала (1) воспользуемся результатами, полученными в [2], согласно которым вероятность пропуска сигнала определяется выражением

$$\beta \approx (1 - \alpha) \Big[\Phi \Big(\sqrt{2h} + z_0 \Big) - \Phi \Big(z_0 - \sqrt{2h} \Big) \Big], \tag{25}$$

где $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(-t^2/2) dt$ – интеграл вероятности; $z_0^2 = a_0^2 \tau_0 / N_0$ – отношение сигнал/шум; h – по-

рог обнаружения; *а* – вероятность ложной тревоги (16).

Точность соотношения (25) возрастает с увеличением z_0, h .

Результаты моделирования алгоритма обнаружения колокольного радиоимпульса

Формулы для характеристик обнаружения (16), (23) и (25) радиосигнала s(t) (1) получены на основе ряда допущений, которые носят приближенный характер. Оценить аналитически точность этих формул не представляется возможным. Можно лишь утверждать, что она возрастает с увеличением h и z_0^2 (а также с увеличением ξ для соотношения (23)). Поэтому с целью установления границ применимости найденных асимптотически точных формул (16) и (25) и сравнения точности формул (16) и (23) было выполнено статистическое моделирование алгоритма обнаружения (6) на ЭВМ. В качестве модели сигнала был выбран радиоимпульс с огибающей колокольной формы:

$$s(t) = a_0 \exp\left\{-\left[\sqrt{\pi/2} \left(t - \lambda_0\right)/\tau_0\right]^2\right\} \cos(\omega_0 t - \phi_0) = a_0 f\left[\left(t - \lambda_0\right)/\tau_0\right] \cos(\omega_0 t - \phi_0),$$
(26)

где

$$f(x) = \exp\left(-\pi x^2/2\right). \tag{27}$$

Предполагалось, что истинные значения времени прихода λ_0 и длительности τ_0 лежат в середине соответствующих априорных интервалов, т.е. $\lambda_0 = (\Lambda_1 + \Lambda_2)/2$, $\tau_0 = (T_1 + T_2)/2$. Исходя из явного выражения для функции f(x) (27), согласно (16), (25), (26) были найдены выражения для вероятностей ложной тревоги и пропуска радиосигнала:

$$\alpha \approx \min\left(1, \frac{m_{\lambda}h(1-\eta)\exp(-h)}{2\sqrt{\pi}} \times \left\{1 + \frac{\sqrt{2}}{m_{\lambda}(1-\eta)\sqrt{h}} \left[\frac{m_{\lambda}\sqrt{\pi}(1+\eta)}{2} - \ln(\eta)\right] + \frac{1}{2h} \left[\frac{4\sqrt{\pi}}{m_{\lambda}(1-\eta)} - 1\right]\right\}\right), \quad (28a)$$

$$\beta \approx (1 - \alpha) \Big[\Phi \Big(\sqrt{2h} + z_0 \Big) - \Phi \Big(z_0 - \sqrt{2h} \Big) \Big], \tag{286}$$

а также выражение для вероятности ложной тревоги, рассчитанное согласно (25):

$$\tilde{\alpha} \approx \begin{cases} m_{\lambda} h(1-\eta) \exp(-h) / 2\sqrt{\pi}, & h \ge 1; \\ 1, & h < 1. \end{cases}$$
(29)

где $z_0^2 = a_0^2 \tau_0 / N_0$ – отношение сигнал/шум; $\eta = T_1 / T_2$; $m_\lambda = (\Lambda_2 - \Lambda_1) / T_1$ – число элементов разрешения, укладывающихся в априорном интервале возможных значений времени прихода λ_0 сигнала (1) с минимально возможной длительностью.

При выполнении (2) и достаточно большом интервале наблюдения [0;T] для процессов $R_s(\lambda, \tau)$ и $R_c(\lambda, \tau)$ (7) при отсутствии составляющих радиосигнала $R_{0s}(\lambda, \tau)$, $R_{0c}(\lambda, \tau)$ и наличии $R_{1s}(\lambda, \tau)$, $R_{1c}(\lambda, \tau)$ и при $\phi_0 = 0$ справедливы следующие соотношения:

$$\langle R_{0s}(\lambda,\tau) \rangle = \langle R_{0c}(\lambda,\tau) \rangle = 0,$$

$$\langle R_{1s}(\lambda,\tau) \rangle \approx 0, \quad \langle R_{1c}(\lambda,\tau) \rangle \approx z_0 \int_{-\infty}^{\infty} f\left(\frac{t-\lambda_0}{\tau_0}\right) f\left(\frac{t-\lambda}{\tau}\right) dt / \sqrt{\tau_0\tau} = z_0 S(\lambda,\tau),$$

$$\langle \left[R_c(\lambda_1,\tau_1) - \langle R_{0c}(\lambda_1,\tau_1) \rangle \right] \left[R_c(\lambda_2,\tau_2) - \langle R_{0c}(\lambda_2,\tau_2) \rangle \right] \rangle \approx$$

$$\approx \langle \left[R_s(\lambda_1,\tau_1) - \langle R_s(\lambda_1,\tau_1) \rangle \right] \left[R_s(\lambda_2,\tau_2) - \langle R_s(\lambda_2,\tau_2) \rangle \right] \rangle \approx \int_{-\infty}^{\infty} f\left(\frac{t-\lambda_1}{\tau_1}\right) f\left(\frac{t-\lambda_2}{\tau_2}\right) dt / \sqrt{\tau_1\tau_2},$$

$$\langle \left[R_s(\lambda_1,\tau_1) - \langle R_s(\lambda_1,\tau_1) \rangle \right] \left[R_c(\lambda_2,\tau_2) - \langle R_s(\lambda_2,\tau_2) \rangle \right] \rangle \approx$$

$$\approx \langle \left[R_c(\lambda_1,\tau_1) - \langle R_c(\lambda_1,\tau_1) \rangle \right] \left[R_s(\lambda_2,\tau_2) - \langle R_s(\lambda_2,\tau_2) \rangle \right] \rangle \approx 0,$$

$$\text{где } S(\lambda,\tau) = \int_{-\infty}^{\infty} f\left(\frac{t-\lambda_0}{\tau_0}\right) f\left(\frac{t-\lambda}{\tau}\right) dt / \sqrt{\tau_0\tau}.$$

$$(30)$$

Это позволило для сокращения объема вычислений при моделировании алгоритма (6) в случае отсутствия сигнала вместо процессов $R_s(\lambda, \tau)$ и $R_c(\lambda, \tau)$ (7) моделировать процессы

$$N_k(\lambda,\tau) = \sqrt{2} \int_{-\infty}^{\infty} n_k(t) f[(t-\lambda)/\tau] dt / \sqrt{\tau N_0} ,$$

где $n_k(t)$ (k=1,2) – статистически независимые центрированные гауссовские случайные процессы с корреляционными функциями вида $B_n(t_1,t_2) = \frac{N_0}{2} \delta(t_2 - t_1).$

Корреляционные свойства процессов $N_k(\lambda, \tau)$ (k = 1, 2) аналогичны (30). При этом решающая статистика (4) радиосигнала формировалась в виде

$$\hat{M}(\lambda,\tau) = \left\{ N_1^2(\lambda,\tau) + \left[\vartheta z_0 \hat{S}(\lambda,\tau) + N_2(\lambda,\tau) \right]^2 \right\} / 2, \qquad (31)$$

где $\mathcal{G} = 0$ при отсутствии сигнала и $\mathcal{G} = 1$ при его наличии.

В процессе моделирования для различных значений η , m_{λ} и z_0 методом скользящего суммирования [7] при наличии и отсутствии сигнала формировались отсчеты функционалов $N_{kij} = N_k (i\Delta_{\lambda}, j\Delta_{\tau})$, $\hat{S}_{ij} = \hat{S}(i\Delta_{\lambda}, j\Delta_{\tau})$ с шагом Δ_{λ} по параметру λ и с шагом Δ_{τ} – по параметру τ , так что среднеквадратическая погрешность такой ступенчатой аппроксимации не превышала 5%. По сформированным отсчетам вырабатывались отсчеты решающей статистики (31) $\hat{M}_{gij} = \left\{N_{1ij}^2 + \left[\mathcal{G}z_0\hat{S}_{ij} + N_{2ij}\right]^2\right\}/2$, $\mathcal{G} = 0, 1$. При моделировании алгоритма обнаружения наибольший отсчет решающей статистики \hat{M}_{gij} ($\mathcal{G} = 0, 1$) сравнивался с заданным порогом h и подсчитывалось относительное число превышений (для оценки вероятности ложной тревоги) или непревышений (для оценки вероятности пропуска сигнала) максимальным отчетом \hat{M}_{gij} этого порога. При вычислении экспериментальных значений вероятности пропуска сигнала порог h выбирался по критерию Неймана-Пирсона исходя из заданной вероятности ложной тревоги α (29).

Некоторые результаты статистического моделирования и соответствующие теоретические зависимости, рассчитанные по формулам (28) и (29), представлены на рис. 1 и 2. Каждое экспериментальное

значение получено в результате обработки не менее $5 \cdot 10^3$ реализаций решающей статистики \hat{M}_{gij} (g = 0, 1), так что с вероятностью 0,9 границы доверительных интервалов вероятностей ложной тревоги, пропуска сигнала и рассеяний оценок времени прихода и длительности отклоняются от экспериментальных значений не более чем на 10...15%.

На рис. 1 значками отмечены экспериментальные значения, а линиями – соответствующие

Рис. 1. Графики зависимости вероятности ложной тревоги от порога при различных η (*a*) и различных m_{λ} (*б*)

Рис. 2. Графики зависимости вероятности пропуска сигнала от отношения сигнал/шум

Рис. 3. Графики зависимости величины *χ* от вероятности ложной тревоги

теоретические зависимости вероятностей ложной тревоги α (сплошные линии) и $\tilde{\alpha}$ (штриховые линии) от порога h при фиксированном значении $m_{\lambda} = 10$ (рис. 1,a) и $\eta = 10^{-1}$ (рис. 1, δ). На рис. 1,a кривые l и квадратики соответствуют $\eta = 0,5$, а кривые 2 и кружочки – $\eta = 10^{-5}$. На рис. 1, δ кривые l и квадратики соответствуют $m_{\lambda} = 10$, кривые 2 и кружочки – $m_{\lambda} = 10^2$, кривые 3 и треугольники – $m_{\lambda} = 10^3$. На рис. 2 значками отмечены экспериментальные значения, а линиями соответствующие теоретические зависимости вероятности пропуска сигнала β от отношения сигнал/шум z_0 при $\alpha = 10^{-2}$ (сплошные линии, крестики и квадратики) и при $\alpha = 10^{-3}$ (штриховые линии, кружочки и ромбики). Кривые l, квадратики и ромбики соответствуют $m_{\lambda} = 10^3$, $\eta = 10^{-1}$, кривые 2, квадратики и ромбики – $m_{\lambda} = 10^4$, $\eta = 10^{-1}$.

Пусть $\chi = (\alpha - \tilde{\alpha})/\tilde{\alpha}$ – величина, характеризующая относительное отклонение вероятности ложной тревоги α (28), рассчитанной с учетом возможного пересечения выбросами решающей статистики границ априорной области П, от вероятности ложной тревоги $\tilde{\alpha}$ (29), рассчитанной без учета этих эффектов. На рис. 3 представлена зависимость величины χ от вероятности ложной тревоги $\tilde{\alpha}$ (29) при $m_{\lambda} = 10^2$, $\eta = 10^{-2}$ (сплошная линия), $m_{\lambda} = 10^2$, $\eta = 10^{-1}$ (штриховая линия) и $m_{\lambda} = 10$, $\eta = 10^{-1}$ (штрихпунктирная линия).

Из рис. 1 следует, что при малых априорных интервалах для вычисления вероятности ложной тревоги формулы (28) существенно лучше аппроксимируют экспериментальные значения, чем соотношения (29), полученные в [1, 2]. Например, при $m_{\lambda} = 10$, $\eta = 0.5$, h = 4 значение вероятности ложной тревоги, рассчитанное по формуле (28), отличается от значения вероятности ложной тревоги, рассчитанного по формуле (29), более чем в 3 раза. Однако при достаточно высоких порогах (малых значениях вероятности ложной тревоги) и больших априорных интервалах это различие уменьшается. В частности, в соответствии с рис. 3 при $m_{\lambda} = 10^2$, $\eta = 10^{-1}$ значения вероятности ложной тревоги, рассчитанные по формулам (28) и (29), удовлетворительно согласуются (отклонение не более 50%) при $\tilde{\alpha} < 10^{-3}$.

 Проведенное исследование показало, что если априорный интервал возможных значений времени прихода λ₀ и длительности τ₀ достаточно велик, а расчетные значения вероятности ложной тревоги достаточно малы, то для вычисления вероятности ложной тревоги можно воспользоваться простой формулой (17), полученной в [2]. В противном случае следует использовать более точную формулу (16), учитывающую краевые эффекты на границе априорной области возможных значений неизвестных параметров.

Исследование выполнено за счет средств гранта Российского научного фонда (проект №15 11 10022).

Литература.

- 1. Акимов П.С., Бакут П.А., Богданович В.А. и др. Теория обнаружения сигналов / Под ред. П.А. Бакута. М.: Радио и связь. 1984. 440 с.
- Проняев Е.В. Обнаружение узкополосного радиосигнала в условиях параметрической априорной неопределенности // Труды IX Междунар. научно-технич. конф. «Радиолокация, навигация, связь». Воронеж. 2003.
- 3. *Трифонов А.П., Шинаков Ю.С.* Совместное различение сигналов и оценка их параметров на фоне помех. М.: Радио и связь. 1986. 264 с.
- 4. Куликов Е.И., Трифонов А.П. Оценка параметров сигналов на фоне помех. М.: Сов. Радио. 1978. 296 с.
- 5. Worsley K.J. Testing for signals with unknown location and scale in a χ^2 random field, with an application to fMRI // Advances in Applied Probability. 2001. 33. P. 773–793.
- 6. Hasofer A.M. Upcrossings of Random Fields // Supplement to Advances in Applied Probability. 1978. 10. P. 14-21.
- 7. Быков В.В. Цифровое моделирование в статистической радиотехнике. М.: Сов. радио. 1971. 326 с.

Поступила 15 января 2016 г.

Efficiency of radio-signal with unknown parameters detection

© Authors, 2016

© Radiotekhnika, 2016

A.P. Trifonov – Dr. Sc. (Eng.), Honored Scientist of RF, Professor, Head of Department of Radiophysics, Voronezh State University

E-mail: trifonov@phys.vsu.ru

E.V. Litvinov – Ph. D. (Phys.-Math.), Assistant, Department of Radiophysics, Voronezh State University E-mail: elitvinov@list.ru

In this paper the analysis of detection algorithm of the symmetrical general form radio-signal with unknown amplitude, arrival time, duration and phase is considered provided by finite-sized a priori area.

The asymptotically exact expressions for Type I and Type II error probabilities are get. The heuristic method based on the evaluation of the mean Euler characteristic of principal statistic excursion sets in fixed-size a priori area is used to evaluate Type I error probability. To derive the expression for Type II error probability the well-known expression is used there are take into account conditions of high precision estimation of unknown parameters and the distribution of principal statistic obtained for evaluation of Type I error.

It is shown that the precision of derived expressions increases when the detection level rises, it does not depend on the size of a priori area and it is higher then the precision of expressions for Type I and Type II error probabilities evaluated on condition of infinite a priori area.

The statistical computer modeling of bell-like signal detection algorithm is used to investigate the applicability limits of derived expressions.

References

- Akimov P.S., Bakut P.A., Bogdanovich V.A. i dr. Teoriya obnaruzheniya signalov / Pod red. P.A. Bakuta. M.: Radio i svyaz'. 1984. 440 s.
 Pronyaev E.V. Obnaruzhenie uzkopolosnogo radiosignala v usloviyax parametricheskoj apriornoj neopredelennosti // Trudy' IX Mezhdunar. nauchno-texnich. konf. «Radiolokacziya, navigacziya, svyaz'». Voronezh. 2003.
- Trifonov A.P., Shinakov Yu.S. Sovmestnoe razlichenie signalov i oczenka ix parametrov na fone pomex. M.: Radio i svyaz'. 1986. 264 s.
 Kulikov E.I., Trifonov A.P. Oczenka parametrov signalov na fone pomex. M.: Sov. Radio. 1978. 296 s.
- Worsley K.J. Testing for signals with unknown location and scale in a x² random field, with an application to fMRI // Advances in Applied Probability. 2001. 33. P. 773–793.
- 6. Hasofer A.M. Upcrossings of Random Fields // Supplement to Advances in Applied Probability. 1978. 10. P. 14–21.
- 7. By'kov V.V. Czifrovoe modelirovanie v statisticheskoj radiotexnike. M.: Sov. radio. 1971. 326 s.