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Abstract—The quasi-likelihood algorithm detection of rectangle 
ultra-wideband quasi-radiosignal with unknown amplitude, initial 
phase and duration has been synthesized. The statistical characteristics 
of the efficiency synthesized detection algorithm – false alarm 
probability and probability of missing a signal, have been found.  
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I.  INTRODUCTION 

There is an acute task of radiosignal detection in practical 
applications of radio- and hydrolocation, navigation, seismology, 
radiocommunication and others, which has been considered in 
literature [1-3]. It was supposed that the radiosignal is 
narrowband [1,3]. Ultra-wideband signals find a wider 
application in the modern world [4], but algorithms of optimal 
processing of such signals have not been researched enough. The 
work [5] considers the task of detection of a radiosignal, which 
does not satisfy the condition of relative narrowbandness and is 
called ultra-wideband quasi-radiosignal. Amplitude and initial 
phase of the ultra-wideband quasi-radiosignal were considered in 
[5] unknown. However, often apart from amplitude and initial 
phase the duration of the received signal appears to be unknown. 
Quasi-likelihood algorithm of ultra-wideband quasi-radiosignal 
detection with unknown amplitude, initial phase, and duration is 
researched in [6], where instead of duration, unknown in advance, 
its expected, predicted value is used. This work considers quasi-
likelihood algorithm of ultra-wideband quasi-radiosignal 
detection with adaptation in duration. 

II. PROBLEM STATEMENT  

Let the signal be a subject to duration  
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where a , ϕ , ω ,τ  –  amplitude, initial phase, frequency, and 

duration [5]. If frequency band ωΔ  and frequency ω  satisfy 
condition  

ω ωΔ << .           (2) 

The signal (1) is a narrowband quasi-radiosignal [2,7]. If 
condition (2) is not performed, formula (1) describes ultra-
wideband quasi-radiosignal [5,6]. Values a , ϕ , ω  are 

parametres of harmonic oscillations, used for its forming. 
Nevertheless, similarly to [5,6] we will then name a , ϕ , ω  

amplitude, initial phase, and frequency of ultra-wideband 
quasi-radiosignal (1). Let us consider that signal (1) is 
received at the background of white Gaussian noise ( )n t  with 

unilateral spectral density 0N , and true values of amplitude 

0a , initial phase 0ϕ  and duration 0τ  are prior unknown. We 

will submit additive mixture of signal (1) and noise ( )n t , 

observed during time period [0, ]t T∈  in a form 

  ( )0 0 0 0( ) , , , ( )t s t a n tξ γ ϕ τ= + , (3) 

where γ  is a discrete parameter, taking the value 0γ =  in the 

absence of signal and 1γ =  in the presence, and 0γ  as its 

unknown true value. We will consider that the signal duration 
can take values from the prior interval [ ]1 2,T Tτ ∈ . Having the 

accepted realization (3), the receiving device should make a 
solution about signal presence or absence. Then the task of 
detection comes down to the evaluation of the parameter γ  on 

the basis of the observed data. 

III. SYNTHESIS OF THE DETECTION ALGORITHM 

For the synthesis of the algorithm of ultra-wideband quasi-
radiosignal detection (estimation of the parameter γ ) we will 

use the maximum likelihood (ML) method [1,2,7]. Under 
unknown signal parameters there is prior parameter 
uncertainty in relation to amplitude, initial phase, and 
duration. In any case, the logarithm of the likelihood ratio 
functional (LRF) depends on four unknown parameters  
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A range of detection algorithms can be received after 
setting in the formula (4) the unknown values instead of a , ϕ  
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and τ . These values can be fixed as in [6], and can be 
determined by the realization of the observed data. Instead of 
unknown amplitude and initial phase in formula (4) we will by 

analogy with [6] use some of their expected values *a  and *ϕ  

respectively, and instead of unknown duration its quasi-
likelihood estimation (which is equal to adaptation of the 
algorithm of detection by duration). Then the estimation γ̂  of 

the γ  parameter, determined as γ  value, under which the 

logarithm LRF reaches its absolute maximum, is quasi-
likelihood [7]. Quasi-likelihood algorithm of the signal 
detection (estimation of the γ  parameter) can by analogy with 

[6] be represented as 

 {1, ,ˆ 0, ,
L h
L hγ ≥= <  (5) 

there 

      sup ( )L L
τ

τ= , * *( ) ( 1, , , )L L a aτ γ ϕ ϕ τ= = = = . (6) 

The threshold h  in formula (5) is chosen in coordination 
with a specified criteria of optimality [1,2]. Formulas (4) – (6) 
determine the structure of the receiver. A detector should form 
a random process (6) for all possible values of duration and 
find its maximum. The solution about absence or presence of a 
signal is made on the basis of the comparison of the maximum 
value (6) with threshold h . Let us put into the formula (4) the 
explicit form of the ultra-wideband quasi-radiosignal (1) and 
transform the logarithm LRF to the form 
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where  
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Quasi-likelihood detector of the ultra-wideband quasi-
radiosignal (5) can be realized on the basis of the flow chart at 
the Fig.1, where integrators (I) work at the time interval [0, ]t , 

2[0, ]t T∈ , F – frequency doubler, RG – ramp generator, PD - 

peak detector, TD – thresholder, that makes the comparison of the 
maximum value L with threshold h  and makes the solution 
about absence or presence of a signal. 

 
Fig.1. Block diagram of the ultra-wideband quasi-radiosignal detector  

IV. CHARACTERISTICS OF THE DETECTION ALGORITHM 

Let us make the analysis of the quasi-likelihood algorithm 
of detection (5), that find the probabilities of the false-alarm 
and the signal omission [1,2,8]. It is obvious that ignorance of 
amplitude and initial phase impacts the efficiency of detection. 
Thus, let us introduce values, characterizing detuning of quasi-

likelihood detector by amplitude *
0a a aΔ = and initial phase 

*
0ϕ ϕ ϕΔ = − . Then expected amplitude and initial phase can be 

expressed by true values and detuning of corresponding parameters 
*

0 aa a= Δ  and *
0 ϕϕ ϕ= + Δ . Putting expected values *a  and 

*ϕ  in formula (7), we will write the logarithm LRF as 
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 According to (9) a random process ( )L τ is Gaussian. 

Thus, for its full statistical description it is enough to find 
expected value and correlation function. Let us consider 

( ) ( ){ }1 0 1L Lτ τ γ= =  to be the logarithm LRF in the presence 

of signal in accepted realization, and ( ) ( ){ }0 0 0L Lτ τ γ= = – 

in its absence. Making averaging out, we get mathematical 
expectations in the presence of signal 
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and in its absence 
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and correlation function 
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Let us then consider that the out signal to noise ratio (SNR) is 
big enough for the received signal. To find the false-alarm 
probability let us research determinant statistics near its 
maximum position. With the growth of the SNR the maximum 
position of determinant statistics converges in mean square to the 
maximum position of its mathematical expectation [8]. Let us 
differentiate mathematical expectation in the absence of signal (11) 

( ) ( )0 2 2 2
0 0 0cosa

S
a Nϕ

τ
ωτ ϕ

τ
∂

= − Δ − − Δ
∂

. 

It is evident that the derivative of the mathematical 
expectation in the absence of signal is negative for all possible 
meanings of duration. Thus, the maximum position of the 
mathematical expectation ( )0S τ of the determinant statistics 

coincides with the left border of the prior interval of possible 
meanings of duration 1T . Putting formulas (11) and (12) in 

Taylor’s series by τ  near 1T , we will get asymptotic expressions 

for mathematical expectation in the absence of signal  

 ( ) ( )0 0 1 0 22 2S T Tτ λ τ ψ≈ − − −  (13) 

and correlation function 

 ( ) ( )0 1 2 0 0 1 1 2 1 2, min ,qK T T Tτ τ λ ψ τ τ≈ + − − , (14) 

where 
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 2 2
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– SNR on the output of the ML receiver for square pulse of 
amplitude 0a  and duration 2T . Let us approximate under big 

SNR the logarithm LRF ( )0L τ  by the Gaussian random process 

( )0μ τ  with mathematical expectation (13) and correlation 

function (14) along the whole prior interval of duration values. 
Using formulas (13), (14) and Doob’s theorem [9,10], we can 
show that the determinant statistics ( )0μ τ  is a Gaussian 

Markov process with drift coefficient 10k  and diffusion 

coefficient 20k  [9,10] 

                       10 0 22k Tψ= − ,     20 0 2k Tψ= .                (16) 

The false-alarm probability is by definition ( )01 F hα = − , where 

                ( ) ( ) [ ]{ }0 0 1 2, ,F h P h T Tμ τ τ= < ∈          (17) 

- probability of failure to achieve borders y = −∞  and y h=  

by Markov random process ( )0μ τ  at the interval [ ]1 2,T Tτ ∈ . 

The required probability (17) can be expressed through the 
probability density ( ),W y τ  of realizations of a random process 

( )0μ τ , which have never reached borders y = −∞ , y h=  [9] 

                          ( ) ( )0 2,
h

F h W y T dy
−∞

=  .  (18) 

The probability density ( ),W y τ  is the solution to the 

Fokker-Planck-Kolmogorov (FPK) equation [8,9]  
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with coefficients (16) 1 10k k= , 2 20k k=  under initial 

condition 
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and boundary conditions 

( ) ( ), , 0W W hτ τ−∞ = = . 

Solving the FPK equation by the reflection technique with 
the sign variation [8-10], putting found solution in (18), and 
then (18) in (17), we get a formula for false-alarm probability  
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where ( ) ( )21
exp 2

2

x

x t dt
π −∞

Φ = −  – error function integral.  

Let us then find a formula for conditional the missing 
probability a signal, for which we will research determinant 
statistics ( )1L τ  near the maximum position of its 

mathematical expectation(10) ( )1arg sups Sτ τ= . The 

derivative of mathematical expectation (10) of determinant 
statistics (9) looks like 
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We will consider then combinations of expected and true 
values of amplitude and initial phase, in which the maximum 
position of mathematical expectation (10) coincides with the 
true value of unknown duration, so that 0sτ τ= . Let us 

decompose functions (10) and (12) in Taylor's series by τ  in 
the neighborhood of 0τ , we will get asymptotic expressions 

for mathematical expectation in the presence of signal 
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and correlation function 
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We will approximate the logarithm LRF ( )1L τ  by 

Gaussian random process ( )1μ τ with mathematical 

expectation (21) and correlation function (22). Such 
approximation makes sense for all 0 2 1 2d Tτ τ τ λ ψ> = − , 

under which dispersion of a random process ( )1μ τ  is 

nonnegative, that is ( ) ( )1 1 2 0 2, 0qK Tτ τ λ ψ τ τ≈ + − ≥ . 

Using approximation ( )1μ τ , we will consider that duration 

takes the value from the prior interval [ ]2,dT T , where 

( )1max ,d dT Tτ= . Using formulas (21), (22) and Doob’s 

theorem [8,9], it can be shown that the determinant statistics 

( )1μ τ is Gaussian Markov process with drift coefficient 11k  

and diffusion coefficient 21k  [9,10] 
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The missing probability a signal is by definition 

                    ( ) ( ) [ ]{ }1 1 2, ,dF h P h T Tβ μ τ τ= = < ∈        (24) 

the probability’s of failure to achieve borders y = −∞  and 

y h=  by Markov random process ( )1μ τ  at the interval 

[ ]2,dT Tτ ∈ . The searched probability (24) can be expressed 

through probability density ( ),W y τ  of random process 

realizations ( )1μ τ , which have never achieved borders 

y = −∞ , y h=  [9] 

                               ( ) ( )1 2,
h

F h W y T dy
−∞

=  .                     (25) 

Function ( ),W y τ  is the solution to the FPK equation (19) 

with coefficients (23) under initial condition 
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and boundary conditions 

( ) ( ), , 0W W hτ τ−∞ = = , 

where ( )2
1 2 0 2 ,dT Tσ λ ψ τ= + − ( )1 1 0 2/ 2 2dm T Tλ ψ τ= + − . 

Solving the FPK equation by the reflection method with a 
change in sign [8-10], putting found solution in (25), and then 
(24), we get a formula for missing probability a signal 
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Fig. 2. The dependence of 
false-alarm probability on SNR 

Fig. 3. The dependence of missing 
probability a signal on SNR 

  
Fig. 4. The dependence of the 

missing probability a signal on 
parameter of narrowbandness 

Fig. 5. The dependence of the 
missing probability a signal on detuning 
of initial phase of received signal  

Fig.2 depicts dependencies of the false-alarm probability 
(20) from SNR (15) under different values of the parameter of 
narrowbandness 0 2κ ωτ π= , which is equal to the number 

of periods of harmonic oscillations (1), settling at the signal 
duration 0τ . Dashed-line curve corresponds to the parameter 

of narrowbandness 0.4κ = , solid-line curve 0.6κ = , and 
dash-dotted line – 0.8κ = . Fig.3 shows dependencies of the 
missing probability a signal (26) from SNR (15) under 
different values of the narrowbandness parameter: solid-line 
curve corresponds to the narrowbandness parameter 0.4κ = , 
dashed-line curve – 0.6κ = , and dash-dotted line – 0.8κ = . 
In the calculation of lines at fig.2 and 3 it was supposed that 
initial phase of received signal 0 0ϕ = , threshold 0h = , 

2 1 4T T = , and there are no detunings of amplitude 1aΔ =  

and initial phase 0ϕΔ = . Fig.4 and 5 depict dependencies of 

the missing probability a signal (26) under different values of 
the SNR (16) from the parameter of narrowbandness and 
detuning of initial phase, respectively. Dashed-line curve 
correspond to SNR 3z = , solid-line ones – 5z = , and dash-
dotted lines – 7z = . In the calculation of lines of fig.4 it was 
supposed that initial phase of received signal 0 0ϕ = , 

threshold 0h = , 2 1 4T T = , there are no detunings of 

amplitude 1aΔ =  and initial phase 0ϕΔ = , and for lines at 

fig. 5 – 0 0ϕ = , 0h = , 2 1 4T T =  and 0.5κ = .  

V. CONCLUSION 

As the figures show, the parameter of narrowbandness 
κ makes huge impact at the quality of detection of ultra-
wideband quasi-radiosignal. With the growth of κ the impact 
on detection characteristics lowers, which is confirmed by a 
private case of ultra-wideband quasi-radiosignal – narrowband 
radiosignal ( 1κ >> ), characteristics of detection of which do 
not depend on number of periods of harmonic oscillations at 
the interval of its duration [1-3]. Ignorance of the parameter of 
narrowbandness, amplitude or initial phase (presence of 
detunings) lead to the growth of underflow errors. Thus, in 
practical applications it is appropriate to use such ultra-
wideband quasi-radiosignals, for which the number of periods 
of harmonic oscillations at the interval of duration corresponds 
to the lowest error probabilities.   
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