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Abstract 

We synthesize the quasi-likelihood and maximum likelihood 

algorithms for estimating the duration of the free-form signal 

with the unknown amplitude. That the signal may be missing 

in the received realization of the observable data is taken into 

account. The characteristics of the introduced algorithms are 

found. 
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Maximum likelihood estimate, Signal duration, Signal 
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INTRODUCTION 

The estimate of the duration of the signal observed against 

noise is important for many practical applications referring to 

communication and location theory, monitoring, seismology, 

etc. This problem is considered in a number of studies [1-4], 

where some optimal and quasi-optimal algorithms for the 

estimation of the free-form signal duration are introduced. The 

signal amplitude is often unknown, as well as the duration. The 

estimate of the duration of the free-form signal form with 

unknown amplitude is considered in paper [5], and the 

amplitude estimate of the signal with unknown duration – in 

paper [6]. However, the case of information transferred 

through an unstable communication channel, i.e. when the 

signal loss may occur is also of great importance. If the 

presence of the useful signal is not required, then we proceed 

to estimating the duration of the missing signal with unknown 

amplitude. In paper [7], the maximum likelihood and Bayesian 

algorithms are synthesized for the estimate of the duration of 

the missing free-form signal with the known amplitude. The 

algorithms for the estimate of the duration of the missing 

signal with unknown amplitude are considered below. 

 

THE PROBLEM STATEMENT 

Let the additive mix 

      tnatst  000 ,,  (1) 

of the useful signal 
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and Gaussian white noise  tn  with the one-sided spectral 

density 0N  is observed over the interval  T,0 . Here 0a , 0  

are the unknown signal amplitude and duration, 

correspondently, and  tf  is a priori known continuous 

bounded function describing the signal form. We presuppose 

that the signal duration possesses the values from the prior 

interval 

  21, , (3) 

while the signal amplitude is a spurious parameter and does not 

need to be estimated. Let the useful signal be present with the 

probability less than 11 p  in the realization of the observable 

data (1). Then the discrete parameter 0  can take the value 

10   (the signal is present) with the probability 1p  and the 

value 00   (the signal is not present) with the probability 

10 1 pp  . Based on the observable realization and the 

available prior information, it is necessary to form the estimate 

of the duration of the useful signal (2) taking the parameters 

0a  and 0  as the spurious ones. 

 

THE SYTHESIS OF THE ESTIMATION ALGORITHMS 

To synthesize the algorithm for the duration estimation, we use 

a maximum likelihood (ML) method [1, 8, 9]. According to the 

specified conditions, the logarithm of the functional of the 
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likelihood ratio (FLR) depends on the three unknown 

parameters: 
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If the useful signal (2) is present in the received realization (1) 

with the probability 11 p , then the ML duration estimate is 

determined as the position of the absolute (greatest) maximum 

of the logarithm of FLR: 

   Lq suparg , (5) 

where the designations are: 

     ,sup aLL
a

,      1,,,  aLaL . (6) 

The algorithm (5) does not account for the possible signal 

missing, therefore, under 11 p , the estimate q  is not the 

maximum likelihood one. For all 11 p  the estimate (5) is 

quasi-likelihood (QL) one [1, 9]. 

In case the useful signal may be absent, the ML approach is 

applied to find the position of the absolute maximum of the 

logarithm of FLR (4), while the current values of the spurious 

parameters a and γ are changed by their ML estimates: 
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From Eq. (4), we see that   00,, aL . Therefore, the 

algorithm (7) produces the following rule: 
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Similarly to [1, 2], we introduce the certain threshold h and the 

generalized ML duration estimate: 
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It should be also noted that the QL estimate (5) is a special 

case of the generalized ML estimate (9), when h . 

According to Eq. (9), to find the ML duration estimate of the 

missing signal, there must be found the magnitude qL  and the 

position q  of the absolute maximum of the logarithm of FLR 

 L  (6). Determining the magnitude of the absolute maximum 

of the logarithm of FLR, we can write down 

 


LLq sup ,             ,,sup q
a

aLaLL , 

    ,suparg aLa
a

q . 

The maximization of the logarithm of FLR by the amplitude 

can be analytically implemented. For this purpose, we set the 

derivative of function  ,aL  by the variable a equal to zero: 
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and solve the specified equation relative to the variable a: 
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By substituting the amplitude (10) into the expression (6), we 

get 
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  dttfNdttftL . (11) 

We now see that the expression (11) is nonnegative for all τ 

from the prior interval (3) with the probability 1. Thus, 

  10 qLP  and therefore the estimation algorithm (8) is the 

degenerate one. Then, after the maximization by the amplitude, 

it is necessary to apply the generalized ML estimation 

algorithm (9). 

The expressions (5), (9) and (11) determine the meter structure. 

Its block diagram is presented in Fig. 1 where the designations 

are: I is the time interval  t,0  integrator, where  21,t ; E 

is the retriever searching position for the input signal 

maximum within time interval  21,  (extremator). By the 

dashed line, the scheme is selected, the one forming the QL 

estimate (5). To implement the ML algorithm (9), the 

logarithm of FLR as the function of current time is passed to 

the peak detector PD, its output signal being the magnitude of 

the maximum of the input signal qL . The threshold device 

(TD) compares the maximum value of qL  with the threshold h 

at the time 2t  and operates the resolver (RS) which 

generates the ML duration estimate. Either this estimate 

coincides with the QL one, if the threshold is exceeded, or it is 

equal to zero, if the threshold is not exceeded. 

 

 

Figure 1: The block diagram of the duration meter  
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THE ANALYSIS OF THE ESTIMATION 

ALGORITHMS 

Let us conduct the analysis of the synthesized algorithms for 

the duration estimation. We designate    jLL j  0  as 

the decision statistics (11) with ( 1j ), or without ( 0j ) the 

useful signal in the received realization. By substituting the 

realization (1) in Eq. (11), we get 
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According to [1], the probability density of the ML duration 

estimate (9) can be presented in the form of 

                    1 01100  wpwpw . (14) 

Here the designations are: 

   




h

jj dAAww  , , 

 ,Aw j  is the joint probability density of the magnitude and 

the position of the absolute maximum of the random process 

 jL , 1,0j ; 
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is the false alarm probability; 
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is the missing probability. Under h , the probability 

density (14) takes the form of 

      1100 wpwpw , 

where  1w  is the probability density of the QL estimate (5), 

in the presence of the signal (2) in the received realization (1), 

and  0w  is the probability density of the QL estimate (5)  

(pseudo-estimate) in the absence of the signal (2). 

Now we consider the statistical properties of the decision 

statistics (11). Similarly to [5, 10], we introduce the auxiliary 

random process 
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 dttftM . (17) 

This process is the Gaussian one with the mathematical 

expectation 
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and the covariance function 
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Here 
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is the signal-to-noise ratio (SNR) at the ML receiver output for 

the signal with the duration τ. 

In Eq. (17), we pass to the new variable    0 qql , 

 21, LLl ,    011  qqL ,    022  qqL . Then, for the 

random process (17), as the function of the variable l we can 

write down the following: 
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Here  l  is determined from the solution of equation 

    lqq  0 , and  l  is the standard Wiener process [11]. 

By applying the random process (17), the decision statistics 

(11) as the function of the variable l can be presented in the 

form of 
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where  0
2
0  qz  is the SNR at the receiver output for the 

received signal. 

Let us consider now the case when the signal is absent in the 

received realization. We express the probability density 

 ,0 Aw  of the magnitude and the position of the maximum of 

the random process  0L  (12) through the probability density 

 ,0 Awl  of the magnitude and the position of the maximum 

of the random process 

     lllL 22
0   (19) 
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as follows 
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In turn, the probability density  xAwl ,0  can be presented in 

the form of [1] 
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Here 
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is the two-dimensional distribution function of the magnitude 

of the maximum of the random process (19). 

In Eq. (19), we carry out another change of variables: 

 1ln Llm  ,  mm ~,0 ,  12ln~ LLm  . Under it, the random 

process   ll  possesses the covariance function 

     2exp 122121 mmllll  . 

Therefore, the random process     llm  , as the 

function of the variable m, is Gaussian Markov stationary 

random process. According to [11], it satisfies the stochastic 

differential equation 

     mddmmmd  2 , 

written down in the symmetrized form. We multiply the last 

equation by  m  and, taking account that 

     mdmmdL   0 ,    mLm 02 , we now get the 

stochastic differential equation for the decision statistics 

 mL0 : 

       mdmLdmmLmdL   2 000 . 

This equation coincides with the similar equation studied in 

[1], where the approximate expression is found for the two-

dimensional distribution function of the maximum value of the 

random process  mL0  in the form of 

         yvPyuPvmLumLPyvuF
mmyym

m , ,,,, 21
~

0
0

020 















. (22) 

   
  

























 , 21                                   , 0

, 21  , expexp
,

0
01

u

uuuy
umLPyuP

ym

 

   
    

























 . 21                                            , 0

, 21  , exp~exp
,

~
02

v

vvvym
vmLPyvP

mmy

 

The probability density 
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is associated with the probability density (21) by the relation 

      xLLxAwxAw ml 1100 ln,,  . (24) 

By substituting the function (22) into the formula (23), and 

then Eq. (23) into Eq. (24) and Eq. (24) into Eq. (20), with 

subsequent integration from h up to ∞, we get 
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is the false alarm probability (15). 

Let us find now the probability density  ,1 Aw . Similarly to 

Eq. (20), we express it through the probability density 

 lAwl ,1  of the magnitude and the position of the maximum of 

the random process 
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as follows 
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Under great SNR, we can neglect the last summand in Eq. (27) 

and write down the next expression approximately 
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In Eq. (29), we carry out the change of variables 

  lzlq 2
00  . The value λ possesses the values from the 

interval  21, , where  11  q ,  22  q , 

  2
000 zq  . Then, we write down the decision statistics 

(29) as the function of the variable λ in the form of 
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This function is Gaussian random process with the 

mathematical expectation 

      2,min 0
2S  (31) 

and the covariance function 

        2121020121 ,min,min,min, K . 

The correlation coefficient     212121 ,min, R  of 

the decision statistics (30) satisfies the condition 

     ytRtxRyxR ,,,  , ytx   [8, 11]. Therefore, the 

random process (30) is the Markov one with drift and diffusion 

coefficients [8, 11] 
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If SNR is big enough, then the position of the maximum of the 

decision statistics (30) is located in the neighborhood of the 

position of the maximum of its mathematical expectation [1]. 

The mathematical expectation (31) reaches the maximum 

value under 0 . We introduce the value   00   

which absolute value decreases with increasing SNR 2
00 z , 

and then rewrite the drift and diffusion coefficients (32) in the 

form of 
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As 0  under 0z , in the neighborhood of point 

0  the decision statistics (30) can be approximated by 

Gaussian Markov random process    with drift and 

diffusion coefficients 
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We use this approximation within all the interval of the 

possible values of the parameter  21, . Between the 

variables λ and τ there is one-to-one relation   q . 

Therefore, the probability density  ,1 Aw  (28) of the 

magnitude and the position of the absolute maximum of the 

random process  1L  (13) can be expressed through the 

probability density   ,1 Aw  of the magnitude and the 

position of the absolute maximum of the random process    

(30). Namely, 
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Similarly to [1], we can write down 

  
 

Avu
yu

xvuF
xAw









  

,,
, 21

2

1 , (35) 

where  xvuF ,,21  refers to the two-dimensional distribution 

function of the absolute maxima of the random process   : 
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It is noteworthy that under 1  the random variable  1  

is described by the probability density 
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The two-dimensional distribution function of the magnitude of 

the maximum of the Markov random process with drift and 

diffusion coefficients (33) for the initial condition (36) is found 

in [12]: 
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Substituting Eqs. (37) into Eq. (35), and then Eq. (35) into Eq. 

(34), with subsequent integrating by variable A from h up to ∞, 

we find the probability density 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 19 (2017) pp. 8548-8555 

© Research India Publications.  http://www.ripublication.com 

8553 

 
  
 

 

   

  
 

,    ,  
2

2
exp

2

 

1

 
2

exp
2

 
2

2
exp

01
1

2
11

0 1

11
123

01

02

02

02

02

0 0

2
0

1







































































































































xd
x

x

h

xx

d

x

x

x
xw

 

 
 

 

  
 

  
 

.    ,  
2

exp1

2

2

2

2
exp

2

2

1

28
exp

2

01
10

1

0

2
01

10

2
101

0 0 1

1
1

10
23

0

22

2
1












































































































 








 





 
 



xdd

x

x

h

x

xx

x
xw

 

This probability density is associated with the desired 

probability density  1w  by the relation 

          ddqqww  11 . (38) 

According to [1], the missing probability (16) can be obtained 

from Eq. (37) as 
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By substituting the false alarm probability (26), the missing 

probability (39) and the probability densities (25), (38) into the 

expression (14), we get the probability density of the ML 

duration estimate. 

The accuracy of the estimates (5), (9) can be also described by 

the conditional bias and variance that for the true duration 

value 0  are determined as [1] 

  001100  bpbpb ,     0
2
01100  VpVpV , 
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As the QL algorithm (5) is the special case of the generalized 

ML algorithm (9) under h , the characteristics of its 

performance can be obtained from the expressions (25) and 

(38) taking equal to h  here. Then, for the probability 

densities of the QL duration estimate in the signal absence and 

presence we get 

 
    

   
















,   ,        , 0

,   , 1

ln

1

21

21

12
0

q

d

dq

qq
w  

 
    

  












.   , ,,

,      , ,,

2

1

0231

0321
1

qqq

qqq

d

dq
w  

Here it is designated:        201  qqq , 
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PULSE WITH BEVEL TOP 

We now specify the obtained expressions for the pulse with 

bevel top [13]. We write down the function describing the 

pulse shape as follows 

     311 2
2 bbbttf   (40) 

where the b parameter determines the pulse top tilt. The 

multiplier   212 31


 bb  is introduced to provide the 

independence of the energy value of the signal of the 

maximum duration from the pulse tilt. It allows us to compare 

the accuracy of the duration estimates of the signals with the 

different bevel top and identical energy. We calculate the 

function (18) with reference to the signal (40): 

  
31

31
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 , (41) 

where 02
2
0

2 2 Nazr   is the SNR for the rectangular pulse 
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with the amplitude 0a  and the duration 2 ; 2  is the 

normalized duration, while  1,1 k , where 12 k  is 

the dynamic range of the unknown duration variation. 

In Figs. 2, there are presented the dependences of the 

normalized variances 2
0V  of the QL (5) and ML (9) duration 

estimates of the pulse (40) upon SNR rz  (41). By the dashed 

line the variance of the QL estimate is shown and by 

continuous lines – the variance of the ML estimate. The 

threshold h is calculated by Neumann-Pirson criterion in terms 

of the condition   ph  , where α is determined by the 

expression (26). Curves 1 are plotted for 110p , curves 2 – 

for 210p , curves 3 – for 310p . For this calculation, it 

is presupposed that 10k , 9b  and the true duration value 

is found in the middle of the prior interval:   2210  , 

  kk 210  . In Fig 2a the dependences are constructed 

under 7.00 p  and in Fig. 3 – under 3.00 p . 

As it can be seen from Figs. 2, the QL estimation algorithm 

(5), without taking into account that the possible signal 

missing, loses in accuracy to the ML algorithm (9), especially 

under the great SNR. The loss in accuracy of the QL estimate 

in relation to the ML estimate increases with the probability of 

signal absence. Nevertheless, as it follows from Fig. 2b, in the 

case of the low SNR and the probability 0p  of the signal 

missing, the QL estimate can provide a little gain in accuracy 

in comparison with the ML estimate. 

 

                    

(a)                                                                                             (b) 

Figure 2: Normalized variances of the QL and ML pulse duration estimates. 

 

CONCLUSION 

On the basis of the conducted statistical analysis of the 

algorithms for the processing of the missing signal with 

unknown duration and amplitude, there can be evaluated an 

influence of a prior ignorance about signal presence or absence 

upon the accuracy of the duration estimate. The obtained 

results allow us to make the informed choice of the desired 

estimation algorithm depending on the requirements for the 

measurer implementation simplicity and the accuracy of 

estimate. By the example of the reception of the pulse with 

bevel top, it is shown that the accuracy of the quasi-likelihood 

duration estimate can essentially yield to the accuracy of the 

appropriate maximum likelihood estimate. Besides, the 

maximum likelihood estimation takes into account the possible 

signal missing in the received realization, which means that in 

fact it is a variant of the joint detection and estimation 

algorithm. 
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