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DETECTION OF AN ULTRA-WIDEBAND QUASI RADIO SIGNAL
WITH UNKNOWN DURATION AGAINST THE BACKGROUND
OF WHITE NOISE

Yu. É.Korchagin∗ and K.D.Titov UDC 621.321

We develop the maximum likelihood algorithm for detecting an ultra-wideband quasi radio signal
with an arbitrary shape and unknown amplitude, initial phase, and duration, which is observed
against the background of additive Gaussian white noise. The structure and statistical character-
istics of this algorithm are found. The influence of a priori ignorance of the duration of a quasi
radio signal on its detection efficiency is studied. The operation efficiencies of the maximum-
likelihood and quasioptimal detectors of the ultra-wideband quasi radio signal are compared. Using
computer simulation, the efficiency of the synthesized algorithm is examined and the applicability
ranges of the obtained asymptotic expressions for its characteristics are determined.

1. INTRODUCTION

In radar, sonar, navigation, and seismology applications, radio-astronomy observations, etc., the
radio-signal detection problem, which was considered in the literature many times on the assumption that
a radio signal is narrowband [1–3], is topical. In the studies of recent years, the ultra-wideband signals are
of keen interest and widely used in radiophysics [4–6]. Ultra-wideband quasi radio signals are referred to
one of the types of such signals [4, 7]. Although their mathematical formulation (model) coincides with the
radio-signal model, the condition of the relative narrowbandness is not fulfilled. The algorithm for detecting
ultra-wideband quasi radio signals with unknown amplitude and initial phase is considered in [7]. However, in
addition to the amplitude and the initial phase, the signal duration is also frequently unknown [3]. Moreover,
the choice of the modulating function can significantly influence the detection efficiency. Therefore, it is
expedient to study the algorithms for detecting an ultra-wideband quasi radio signal with unknown duration
and an arbitrary-shaped modulating function. In this work, we consider the maximum-likelihood algorithm
for detecting the ultra-wideband quasi radio signal with an arbitrary shape and unknown amplitude, initial
phase, and duration.

As in [3, 7], the arbitrary-shaped ultra-wideband quasi radio signal is written in the form

s(t, a, ϕ, τ) =

{
af(t) cos(ωt− ϕ), 0 � t � τ,

0, t < 0, t > τ.
(1)

Here, a, ϕ, ω, and τ are the amplitude, initial phase, frequency, and duration of the ultra-wideband quasi
radio signal, respectively, while f(t) is the modulating function. If the frequency band Δω and the frequency
ω of signal (1) satisfy the condition

Δω � ω, (2)
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signal (1) is narrowband and f(t) is its envelope function [1, 2]. If condition (2) is not fulfilled and only
several periods or even some fractions of the period of the harmonic oscillation a cos(ωt − ϕ) fall on the
interval equal to the signal duration, then Eq. (1) describes the ultra-wideband quasi radio signal [7]. In
the strict sense, the quantities a, ϕ, and ω are not the amplitude, initial phase, and frequency of the quasi
radio signal, respectively, but are the parameters of the harmonic oscillation which is used for the formation
of the signal. Nevertheless, by analogy with [7], for the sake of brevity, we call a, ϕ, and ω the amplitude,
initial phase, and frequency of the ultra-wideband quasi radio signal (1), respectively.

Let us consider the problem of detecting signal (1) with unknown amplitude a, initial phase ϕ, and
duration τ against the background of white Gaussian noise n(t) with one-sided spectral density N0. The
additive mixture of signal (1) and noise n(t), which is observed during the time interval [0, T ], is written as

ξ(t) = γ0s(t, a0, ϕ0, τ0) + n(t), (3)

where a0, ϕ0, and τ0 are the true values of the unknown parameters and γ0 is the discrete parameter, which
is equal to zero in the signal absence (γ0 = 0) and unity in the signal presence (γ0 = 1). It is assumed
that the signal duration τ can take the values from the a priori interval [T1, T2]. Using realization (3), the
receiver should make the decision on the signal presence or absence. Then the detection problem is reduced
to estimating the discrete parameter γ0 on the basis of observed data (3).

2. MAXIMUM-LIKELIHOOD DETECTOR OF AN ULTRA-WIDEBAND QUASI RADIO
SIGNAL WITH UNKNOWN DURATION

The algorithm for signal detection (estimation of the parameter γ) is synthesized using the maximum-
likelihood method [1, 2]. For the unknown signal parameters, there exists an a priori parametric uncertainty
with respect to the signal amplitude, initial phase, and duration. The quantities a, ϕ, and τ are assumed to
be nonrandom [8; p. 378] and the a priori parametric uncertainty is overcome on the basis of the generalized
likelihood-ratio criterion [8; p. 102]. In this case, the likelihood-ratio functional logarithm is a function of
four unknown parameters [2] such that

L(γ, a, ϕ, τ) =
2γ

N0

τ∫
0

ξ(t)s(t, a, ϕ) dt− γ

N0

τ∫
0

s2(t, a, ϕ) dt, (4)

and the estimate of the discrete parameter γ is determined by the expression

γm : L(γm) = sup
γ

[
sup
a,ϕ,τ

L(γ, a, ϕ, τ)

]
.

The first term in Eq. (4) and in what follows is the stochastic integral in the Itô sense. Taking into account
that L(γ = 0, a, ϕ, τ) = 0, we see that the maximum-likelihood detection algorithm involves comparison of
the absolute (greatest) maximum of the likelihood-ratio functional logarithm (4) with a zero threshold, i.e.,

γm =

{
1, L > 0,

0, L � 0,
(5)

L = sup
τ

L(τ), L(τ) = sup
a,ϕ

L(a, ϕ, τ) = L(am, ϕm, τ),

am, ϕm : L(am, ϕm, τ) = sup
a,ϕ

L(a, ϕ, τ), L(a, ϕ, τ) = L(γ = 1, a, ϕ, τ). (6)

By analogy with [1–3, 7], algorithm (5) can be replaced by the generalized detection algorithm based
on comparing the absolute (greatest) maximum L of the likelihood-ratio functional logarithm with some
threshold h, which is not necessarily equal to zero. If the relationship L > h or L < h is fulfilled, then the
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Fig. 1. Block diagram of the maximum-likelihood detection algorithm.

decisions on the signal presence (γm = 1) or absence (γm = 0), respectively, are made.
The function L(τ) is the likelihood-ratio functional logarithm in which the unknown amplitude and

initial phase are replaced by their maximum-likelihood estimates am and ϕm, respectively. This is equivalent
to maximizing the likelihood-ratio functional logarithm L(a, ϕ, τ) in Eq. (6) with respect to the unknown
parameters a and ϕ. Analytically performing this maximization, we obtain

L(τ) =
[Q(τ)− Pc(τ)]X

2(τ) + [Q(τ) + Pc(τ)]Y
2(τ)− 2X(τ)Y (τ)Ps(τ)

2[Q2(τ)− P 2
c (τ)− P 2

s (τ)]
, (7)

where

X(τ) =
2

N0

τ∫
0

ξ(t)f(t) cos(ωt) dt, Y (τ) =
2

N0

τ∫
0

ξ(t)f(t) sin(ωt) dt,

Pc(τ) =
1

N0

τ∫
0

f2(t) cos(2ωt) dt, Ps(τ) =
1

N0

τ∫
0

f2(t) sin(2ωt) dt,

Q(τ) =
1

N0

τ∫
0

f2(t) dt. (8)

Equations (5)–(7) determine the receiver structure. It should form random process (7) for all possible
duration values, find the value of its greatest maximum, and compare it with the threshold. Figure 1 shows
a block diagram of the maximum-likelihood detection algorithm with the following notations: integrators
in the time interval [0, t], where t ∈ [0, T2] (I), the peak detector (PD), and the decision device (DD), which
compares the output signal of the peak detector at the time t = T2 with the threshold and makes decision
on the signal presence or absence in the observed realization.

For the narrowband radio signal in Eq. (7), one can neglect the integrals of the functions oscillating
with the double frequency, i.e., due to Ps(τ) � Q(τ) and Pc(τ) � Q(τ), write Ps(τ) ≈ 0 and Pc(τ) ≈ 0.
Then Eq. (7) for the logarithm of the likelihood-ratio functional is significantly simplified and takes the form

L(τ) = [X2(τ) + Y 2(τ)]/[2Q(τ)],

which agrees with the results presented in [9].
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3. CHARACTERISTICS OF THE MAXIMUM-LIKELIHOOD DETECTOR

Let us analyze the maximum-likelihood detection algorithm given by Eqs. (5) and (7), i.e., find the
false-alarm and signal-missing probabilities [1, 2, 10]. Let us use L1(τ) = {L(τ)|γ0 = 1} and L0(τ) =
{L(τ)|γ0 = 0} to denote the likelihood-ratio functional logarithm (7) in the case of the signal presence and
absence in the adopted realization, respectively.

Let us substitute the observed realization, which is given by Eq. (3), into Eq. (8) for X(τ) and Y (τ)
and isolate the deterministic and random components

X(τ) = γ0Sx(τ) +Nx(τ), Y (τ) = γ0Sy(τ) +Ny(τ), (9)

where

Sx(τ) = a0 cosϕ0{Q(min[τ, τ0]) + Pc(min[τ, τ0])}+ a0Ps(min[τ, τ0]) sinϕ0,

Sy(τ) = a0 sinϕ0{Q(min[τ, τ0])− Pc(min[τ, τ0])} + a0Ps(min[τ, τ0]) cosϕ0,

Nx(τ) =
2

N0

τ∫
0

n(t)f(t) cos(ωt) dt, Ny(τ) =
2

N0

τ∫
0

n(t)f(t) sin(ωt) dt. (10)

The random processes Nx(τ) and Ny(τ) are the linear transformations of the Gaussian white noise n(t)
and, therefore, are also Gaussian [11; p. 97, 8, p. 219]. They possess zero mathematical expectations and the
following correlation functions (hereafter, the angular brackets denote the averaging over the realizations):

Kx(τ1, τ2) = 〈Nx(τ1)Nx(τ2)〉 = Q(min[τ1, τ2]) + Pc(min[τ1, τ2]),

Ky(τ1, τ2) = 〈Ny(τ1)Ny(τ2)〉 = Q(min[τ1, τ2])− Pc(min[τ1, τ2]),

Kxy(τ1, τ2) = 〈Nx(τ1)Ny(τ2)〉 = 〈Ny(τ1)Nx(τ2)〉 = Ps(min[τ1, τ2]).

To find the false-alarm probability, we study the decision statistic

L0(τ) =
[Q(τ)− Pc(τ)]N

2
x(τ) + [Q(τ) + Pc(τ)]N

2
y (τ)− 2Nx(τ)Ny(τ)Ps(τ)

2[Q2(τ)− P 2
c (τ)− P 2

s (τ)]
. (11)

It is a random process with the mathematical expectation

S0(τ) = 〈L0(τ)〉 = 1 (12)

and the correlation function

K0(τ1, τ2) = 〈[L0(τ1)− 〈L0(τ1)〉][L0(τ2)− 〈L0(τ2)〉]〉 = Ψ(τ1, τ2)

Ψ(max[τ1, τ2],max[τ1, τ2])
, (13)

where the following notation is used:

Ψ(τ1, τ2) = Q(τ1)Q(τ2)− Pc(τ1)Pc(τ2)− Ps(τ1)Ps(τ2).

Let us study the local properties of random process (11). To this end, we consider the behavior of
correlation function (13) in the small neighborhood of an arbitrary point τ ∈ [T1, T2]. Let us substitute
τ1 = τ and τ2 = τ + Δ into Eq. (12) and expand Eq. (13) into a Taylor series in terms of Δ in the
neighborhood of τ , rejecting all the terms in which the degree of Δ exceeds unity. As a result, we obtain

K0(τ, τ +Δ) � 1− δ(τ) |Δ|+ o(Δ), (14)
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where

δ(τ) =
1

Ψ(τ, τ)

∂Ψ(τ, x)

∂x

∣∣∣∣
x=τ

=
Q(τ)Q′(τ)− Pc(τ)P

′
c(τ)− Ps(τ)P

′
s(τ)

Q2(τ)− P 2
c (τ)− P 2

s (τ)
(15)

and the prime denotes the derivative with respect to τ . According to Eqs. (12) and (14), the decision statistic
L0(τ) is a locally-stationary and locally-Markov random process. For such a process, the probability of that
the boundary h is not reached in the ε neighborhood of the point τ was found in [1]:

Fε(h, τ)�P
{
L0(x) < h, x ∈

[
τ − ε

2
, τ +

ε

2

]}
=

{
exp [−δ(τ)εh exp(−h)] , h � 1,

0, h < 1.
(16)

The accuracy of approximation (16) improves with decreasing ε and increasing threshold h. Let us divide
the a priori interval [T1, T2] of possible values of the duration into N equal segments with the length
ε = (T2 −T1)/N . The middle point of each interval is denoted as ti = T1 +(i− 1)ε/2, where i = 1, 2, . . . N .
Then the probability of that the boundary h is not reached by the decision statistic L0(τ) in the ith interval
is approximately equal to

F0i(h) = P{L0(τ) < h, τ ∈ [ti − ε/2, ti + ε/2]} = Fε(h, ti). (17)

In this case, the quantity ε should be sufficiently small to make approximation (14) valid. For sufficiently
high thresholds h, overshoots of the realization L0(τ) beyond the level h in various elementary intervals
[ti − ε/2, ti + ε/2] can approximately be considered statistically independent [11]. Then the false-alarm
probability can be expressed via the probability of that the threshold is not reached by the random process
L0(τ) in the interval [T1, T2]:

α � 1− F0(h) = 1− P{L0(τ) < h, τ ∈ [T1, T2]} = 1−
N∏
i=1

F0i(h, ti). (18)

Substituting Eq. (16) into Eq. (17) and then Eq. (17) into Eq. (18) and passing to the limit for ε → 0 and
N → ∞, we obtain

α �

⎧⎪⎨
⎪⎩
1− exp

[
−h exp(−h)

T2∫
T1

δ(τ) dτ

]
, h � 1,

1, h < 1.

(19)

After integration of function (15) in Eq. (19), we find the asymptotic expression for the false-alarm probability

α =

⎧⎪⎨
⎪⎩
1−

[
Q2(T1)− P 2

c (T1)− P 2
s (T1)

Q2(T2)− P 2
c (T2)− P 2

s (T2)

]h exp(−h)/2

, h � 1,

1, h < 1.

(20)

To determine the signal-missing probability, we study the random process L(τ) in Eq. (7) for the signal
presence. Let us consider the normalized (independent of the signal-to-noise ratio (SNR)) functions (8)
and (10):

q(τ) = Q(τ)/z2;

pc(τ) = Pc(τ)/z
2, ps(τ) = Ps(τ)/z

2,

sx(τ) = Sx(τ)/z
2, sy(τ) = Sy(τ)/z

2,

ηx(τ) = Nx(τ)/z, ηy(τ) = Ny(τ)/z, (21)
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where
z2 = 2a20T2/N0 (22)

is the SNR at the output of the maximum-likelihood receiver for a rectangular pulse with the amplitude
a0 and duration T2 without harmonic filling. Among the quantities in Eq. (21), the functions pc(τ), ps(τ),
sx(τ), and sy(τ) are deterministic, while ηx(τ) and ηy(τ) are the random processes. Substituting Eqs. (9)
and (10) into Eq. (7) for γ0 = 1 and allowing for the notations given in Eq. (21), we obtain the following
expression for the decision statistic in the signal presence:

L1(τ) = z2A(τ) + zBx(τ)ηx(τ) + zBy(τ)ηy(τ) + Cx(τ)η
2
x(τ) + Cy(τ)η

2
y(τ) + Cxy(τ)ηx(τ)ηy(τ), (23)

where

A(τ) =
[q(τ)− pc(τ)]s

2
x(τ) + [q(τ) + pc(τ)]s

2
y(τ)− 2ps(τ)sx(τ)sy(τ)

2[q2(τ)− p2c(τ)− p2s (τ)]
,

Bx(τ) =
[q(τ)− pc(τ)]sx(τ)− ps(τ)sy(τ)

q2(τ)− p2c(τ)− p2s (τ)
,

By(τ) =
[q(τ) + pc(τ)]sy(τ)− ps(τ)sx(τ)

q2(τ)− p2c(τ)− p2s (τ)
,

Cx(τ) =
q(τ)− pc(τ)

2[q2(τ)− p2c(τ)− p2s (τ)]
, Cy(τ) =

q(τ) + pc(τ)

2[q2(τ)− p2c(τ)− p2s (τ)]
,

Cxy(τ) = − ps(τ)

q2(τ)− p2c(τ)− p2s (τ)
.

The random processes ηx(τ) and ηy(τ) are Gaussian with the zero mathematical expectations and
the correlation functions

Kηx(τ1, τ2) = Kx(τ1, τ2)/z
2 = 〈ηx(τ1)ηx(τ2)〉 = q(min[τ1, τ2]) + pc(min[τ1, τ2]),

Kηy(τ1, τ2) = Ky(τ1, τ2)/z
2 = 〈ηy(τ1)ηy(τ2)〉 = q(min[τ1, τ2])− pc(min[τ1, τ2]),

Kηxy(τ1, τ2) = Kxy(τ1, τ2)/z
2 = 〈ηx(τ1)ηy(τ2)〉 = 〈ηy(τ1)ηx(τ2)〉 = ps(min[τ1, τ2]).

The decision statistic L1(τ) given by Eq. (23) is not Gaussian, since it contains the operations of
multiplying and squaring the random processes ηx(τ) and ηy(τ). However, for sufficiently large SNRs (z �
1), the last three terms in Eq. (23) can be neglected compared with the preceding ones and approximately
written as

L1(τ) � z2A(τ) + zBx(τ)ηx(τ) + zBy(τ)ηy(τ). (24)

Since the random functions ηx(τ) and ηy(τ) enter Eq. (24) linearly, the process L1(τ) is Gaussian. To
obtain its full statistical description, it is sufficient to find the mathematical expectation and the correlation
function. Performing the averaging, one obtains the mathematical expectation in the signal presence

S1(τ) = 〈L1(τ)〉 = z2A(τ) (25)

and the correlation function

K(τ1, τ2) = 〈[L1(τ1)− S1(τ1)] [L1(τ2)− S1(τ2)]〉 = A1(τ1)A1(τ2){q(min[τ1, τ2]) + pc(min[τ1, τ2])}
+ ps(min[τ1, τ2])[A1(τ1)A2(τ2) +A1(τ2)A2(τ1)]

+A2(τ1)A2(τ2){q(min[τ1, τ2])− pc(min[τ1, τ2])}, (26)
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where

A1(τ) = z
[q(τ)− pc(τ)]sx(τ)− sy(τ)ps(τ)

q2(τ)− p2c(τ)− p2s (τ)
, A2(τ) = z

[q(τ) + pc(τ)]sy(τ)− sx(τ)ps(τ)

q2(τ)− p2c(τ)− p2s (τ)
.

As is known, the location of the decision-statistic maximum shows the rms convergence to the true
value of the duration τ0 with increasing SNR [1, 10]. Therefore, we study the likelihood-ratio functional
logarithm (24) in the neighborhood of the point τ0. Expanding Eqs. (25) and (26) into the Taylor series
in terms of the variable τ in the neighborhood of the point τ0, we obtain asymptotic expressions for the
mathematical expectation

S1(τ) ≈ λ0

2
+

τ − τ0
2T2

{
ψ1, τ � τ0,

−ψ1, τ > τ0
(27)

and the correlation function

K1(τ1, τ2) ≈ λ0 + ψ1 min(τ1 − τ0, τ2 − τ0)/T2, (28)

where λ0 = z2[Q(τ0) + Pc(τ0) cos(2ϕ0) + Ps(τ0) sin(2ϕ0)]/2 and ψ1 = z2f2(τ0) cos
2(ωτ0 − ϕ0).

Let us approximate the likelihood-ratio functional logarithm (24) by the Gaussian random process
μ1(τ) with mathematical expectation (27) and correlation function (28). Such an approximation makes
sense for all τ > τd = τ0 − T2λ0/ψ1 for which the random-process variance μ1(τ) is nonnegative, i.e.,
K1(τ, τ) ≈ λ0 + ψ1(τ − τ0)/T2 � 0. When using the approximation μ1(τ), it is assumed that the duration
takes the values from the a priori interval [Td, T2], where Td = max(τd, T1). Using Eqs. (27) and (28) and
the Doob theorem [12], it can be shown that the decision statistic μ1(τ) is the Markov process with the drift
and diffusion coefficients k11 and k21, respectively [12]:

k11 =
1

2T2

{
ψ1, Td � τ � τ0,

−ψ1, τ0 < τ � T2;
k21 =

ψ1

T2
. (29)

By definition, the signal-missing probability is equal to the probability β that the boundaries y = −∞
and y = h are not reached by the Markov random process μ1(τ) in the interval τ ∈ [Td, T2], i.e.,

β = F1(h) = P{μ1(τ) < h, τ ∈ [Td, T2]}. (30)

The desired probability (30) can be expressed via the probability density W (y, τ) of realizations of the
random process μ1(τ) which have never reached the boundaries y = −∞ and y = h [12]:

F1(h) =

h∫
−∞

W (y, T2) dy. (31)

The function W (y, τ) is the solution of the Fokker–Planck–Kolmogorov equation [12]

∂W (y, τ)

∂τ
+

∂

∂y
[k11(y, τ)W (y, τ)] − 1

2

∂2

∂y2
[k21(y, τ)W (y, τ)] = 0 (32)

with coefficients (29) under the initial condition

W (y, Td) =
1√
2πσ2

exp

[
−(y −m)2

2σ2

]
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and the boundary conditions
W (−∞, τ) = W (h, τ) = 0,

where σ2 = λ0 + ψ1(Td − τ0)/T2 and m = λ0/2 + ψ1(Td − τ0)/2T2.

Solving Eq. (32) by the method of reflection with the sign reversal [12], substituting the obtained
solution into Eq. (31), and then Eq. (31) into Eq. (30), we obtain the expression for the signal-missing
probability

β =
1√
2πλ0

∞∫
0

exp

[
−(ξ + λ0/2)

2 + h2 − hλ0

2λ0

] [
Φ

(√
r

2
+

ξ√
r

)

− exp(−ξ)Φ

(√
r

2
− ξ√

r

)]{
Φ

[
h

√
l

λ0(λ0 − l)
+ ξ

√
λ0 − l

λ0l

]
exp

(
hξ

λ0

)

− Φ

[
h

√
l

λ0(λ0 − l)
− ξ

√
λ0 − l

λ0l

]
exp

(
−hξ

λ0

)}
dξ, (33)

where l = ψ1(τ0 − Td)/T2 and r = ψ1(T2 − τ0)/T2.

The false-alarm and signal-missing probabilities, which are given by Eqs. (20) and (33), respectively,
are the generalizations of the similar expressions obtained in [3] for a narrowband radio signal. Indeed, if
condition (2) is fulfilled for the received signal, which corresponds to detection of the narrowband radio
signal, then |Pc(τ)| � Q(τ), |Ps(τ)| � Q(τ), and the false-alarm and the signal-missing probabilities, (20)
and (33) coincide with similar probabilities obtained in [3] with allowance for the notations. Equation (33)
was obtained by the method of the local-Markov approximation, which determines its presentation form
which is similar to that used in [1; p. 73]. However, the calculation by Eq. (33) can be performed only
numerically.

4. QUASIOPTIMAL DETECTION ALGORITHM

The maximum-likelihood algorithm for detecting an ultra-wideband quasi radio signal, which is shown
in Fig. 1, has a more complicated structure than that of the algorithm for detecting a narrowband radio
signal with unknown amplitude, initial phase, and duration, which was synthesized in [3] and developed
using the classical quadrature scheme. Depending on the requirements to the efficiency and restrictions
imposed on the complexity of the developed detector, it might be expedient to use a simpler quadrature
algorithm for detecting the ultra-wideband quasi radio signal. This algorithm performs comparison with
the absolute-maximum threshold of the decision statistic [3]

Lq(τ) =
X2(τ) + Y 2(τ)

2Q(τ)
, τ ∈ [T1, T2], (34)

γq =

{
1, Lq > 0,

0, Lq � 0,
Lq = sup

τ
Lq(τ). (35)

Such a detector is called quasioptimal. Studying the quasioptimal algorithm for detecting an ultra-wideband
quasi radio signal, one can estimate the efficiency of using the existing detectors of narrowband radio signals
when an additive mixture of an arbitrary-shaped ultra-wideband quasi radio signal and Gaussian white noise
is applied to the receiver input. In this case, the useful signal has unknown amplitude, initial phase, and
duration. The quasioptimal detector can be realized on the basis of the block diagram shown in Fig. 2 in
which the integrators (I) operate in the time interval t ∈ [0, T2].

Let us find the statistical characteristics of a quasioptimal detector based on Eq. (35). Substituting
Eq. (9) into Eq. (34) for γ0 = 0, one obtains the decision statistic of the quasioptimal detector in the signal
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Fig. 2. Block diagram of the quasioptimal detection algorithm.

absence as

L0q(τ) =
N2

x(τ) +N2
y (τ)

2Q(τ)
,

which coincides with Eq. (11) for Pc(τ) = Ps(τ) = 0. Then the false-alarm probability of the quasioptimal
detection algorithm can be obtained from Eq. (20) in the form

αq =

⎧⎪⎨
⎪⎩
1−

[
Q(T1)

Q(T2)

]h exp(−h)

, h � 1,

1, h < 1.

(36)

To find the probability of the signal missing by the quasioptimal detector, we substitute Eq. (9) into
Eq. (34) for γ0 = 1 and obtain the expression for the decision statistic of the quasioptimal detector in the
signal presence:

L1q(τ) = z2
s2x(τ) + s2y(τ)

2q(τ)
+ z

sx(τ)ηx(τ) + sy(τ)ηy(τ)

q(τ)
+

η2x(τ) + η2y(τ)

2q(τ)
. (37)

For sufficiently large SNRs (z � 1), one can neglect the last term in Eq. (37) and approximately write

L1q(τ) ≈ z2
s2x(τ) + s2y(τ)

2q(τ)
+ z

sx(τ)ηx(τ) + sy(τ)ηy(τ)

q(τ)
. (38)

According to Eq. (38), the decision statistic L1q(τ) is a linear transformation of the random processes ηx(τ)
and ηy(τ). The nonlinear operations of squaring in Eq. (38) are used only for deterministic quantities. This
allows us to consider the random process L1q(τ) Gaussian. It has a mathematical expectation

S1q(τ) = 〈L1q(τ)〉 = z2
s2x(τ) + s2y(τ)

2q(τ)
(39)

and a correlation function

Kq(τ1, τ2) = 〈[L1q(τ1)− S1q(τ1)][L1q(τ2)− S1q(τ2)]〉 = A1q(τ1)A1q(τ2){(q(min[τ1, τ2])

+ pc(min[τ1, τ2])} + ps(min[τ1, τ2]) [A1q(τ1)A2q(τ2) +A1q(τ2)A2q(τ1)]

+A2q(τ1)A2q(τ2){q(min[τ1, τ2])− pc(min[τ1, τ2])}, (40)
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where A1q(τ) = zsx(τ)/q(τ) and A2q(τ) = zsy(τ)/q(τ). Expanding Eqs. (39) and (40) into a Taylor series
in terms of τ in the neighborhood of τ0, we obtain asymptotic expressions for the mathematical expectation

S1q(τ) ≈ a0
2

+
τ − τ0
2T2

{
a1, τ � τ0,

−a2, τ > τ0
(41)

and the correlation function

Kq(τ1, τ2) ≈ b0 + bmin(τ1 − τ0, τ2 − τ0)/T2. (42)

Here,

a0 =
z2

2Q(τ0)
[Q2(τ0) + P 2

c (τ0) + P 2
s (τ0) + 2Pc(τ0)Q(τ0) cos(2ϕ0) + 2Ps(τ0)Q(τ0) sin(2ϕ0)]; (43)

a1 =
z2f2(τ0)

Q2(τ0)

{
Q2(τ0)− P 2

c (τ0)− P 2
s (τ0)

+2Q(τ0) [Pc(τ0) cos(2πκ) +Q(τ0) cos(2ϕ0 − 2πκ) + Ps(τ0) sin(2πκ)]} ; (44)

a2 =
z2f(τ0)

Q2(τ0)

[
P 2
c (τ0) + P 2

s (τ0)−Q2(τ0) + 2Pc(τ0)Q(τ0) cos(2ϕ0) + 2Ps(τ0)Q(τ0) sin(2ϕ0)
]
; (45)

b0 =
z4f(τ0)

2Q2(τ0)

{
3Q(τ0) [P

2
c (τ0) + P 2

s (τ0)] +Q3(τ0)

+[3Q(τ0) + P 2
c (τ0) + P 2

s (τ0)][2Pc(τ0) cos(2ϕ0) + 2Ps(τ0) sin(2ϕ0)]
}
; (46)

b =
z2f2(τ0)

Q3(τ0)

{
Q(τ0)[Q(τ0) cos(ϕ0 − πκ) + Pc(τ0) cos(ϕ0 + πκ) + Ps(τ0) sin(ϕ0 + πκ)]2

}
− ([P 2

c (τ0) + P 2
s (τ0) +Q2(τ0)] cos(2ϕ0)[Q(τ0) cos(2πκ)− Pc(τ0)]

− [P 2
c (τ0) + P 2

s (τ0) +Q2(τ0)] sin(2ϕ0)[Ps(τ0)−Q(τ0) sin(2πκ)]

−2Q(τ0)
{
P 2
c (τ0) + P 2

s (τ0)−Q(τ0)[Pc(τ0) cos(2πκ) + Ps(τ0) sin(2πκ)]
})

. (47)

Here, we have introduced the quantity κ = ωτ0/(2π), which is numerically equal to the number of harmonic-
carrier periods, which fall on the signal duration τ0. As in [7, 15], κ is called the narrowbandness parameter.
For κ → ∞, signal (1) becomes narrowband.

The likelihood-ratio functional logarithm (38) is approximated by the Gaussian random process μq(τ)
with mathematical expectation (41) and correlation function (42). Such an approximation makes sense
for all τ > τq = τ0 − T2b0/b for which the random-process variance μq(τ) is nonnegative, i.e., Kq(τ, τ) ≈
b0+b(τ−τ0)/T2 � 0. When using the approximation μq(τ), it is assumed that duration takes the values from
the a priori interval [Tq, T2], where Tq = max[τq, T1]. Using Eqs. (41) and (42) and the Doob theorem (12),
it can be shown that the decision statistic μq(τ) is the Gaussian Markov process with the drift (k1q) and
diffusion (k2q) coefficients [12]

k1q =
1

2T2

{
a1, Tq � τ � τ0,

−a2, τ0 < τ � T2;
k2q =

b

T2
.
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By analogy with probability (30), the signal-missing probability is equal to the probability of that the
Markov random process μq(τ) does not reach the boundaries y = −∞ and y = h for τ ∈ [Tq, T2]. Using the
Markov properties of the process μq(τ), we find the expression for the probability of the signal missing by
the quasioptimal detector in the form

βq =
1√
2πb0

∞∫
0

[
Φ

(
1

2

√
d2r + ξ

√
d2
r

)
− exp(−d2ξ)Φ

(
1

2

√
d2r − ξ

√
d2
r

)]

× exp

[
−d1ξb0 − l(h−m) + d21l

2/4

2b0

]{
exp

[
−(h−mq − ξ)2 − σ2

qd1ξ

2b0

]

× Φ

[
(h−m)d1l + σ2

qξ + σ2
q l/2

σq
√
b0d1l

]
− Φ

[
(h−m)d1l − σ2

qξ + σ2
q l/2

σq
√
b0d1l

]

× exp

[
−(h−mq + ξ)2 + σ2

qd1ξ

2b0

]}
dξ, (48)

where lq = a1(τ0 − Tq)/T2, rq = a2(T2 − τ0)/T2, mq = a0/2 − lq/2, σ
2
q = b0 − d1lq, d1 = a1/b, d2 = a2/b,

and the quantities a0, a1, a2, b0, and b are defined in Eqs. (43)–(47), respectively. The signal-missing
probability (48) coincides in form with Eq. (33) and differs from the latter only by the parameters, which
results from using the method of the local-Markov approximation [1] when obtaining both expressions.

5. COMPARATIVE ANALYSIS OF THE CHARACTERISTICS OF DETECTORS
OF A QUASI RADIO SIGNAL WITH UNKNOWN DURATION

In [7], the maximum-likelihood detector of an ultra-wideband quasi radio signal with unknown am-
plitude and initial phase, but known duration was synthesized. Although its block diagram resembles that
of the maximum-likelihood detector, which is presented in Fig. 1, the integrators operate in the observation
interval [0, τ0] and the peak detector is absent. With allowance for notations (8) and (9), the false-alarm
and signal-missing probabilities for such a detector have the form

α1 = exp(−h), (49)

β1 = exp

(
−z2V

4

) h∫
0

exp(−L)I0

(
z
√
LV
)
dL, (50)

where V = Q(τ0)+Pc(τ0) cos(2ϕ0)+Ps(τ0) sin(2ϕ0) and I0(x) is a modified Bessel function of the first kind
of order zero.

Thus, we have obtained the detection characteristics (the false-alarm and signal-missing probabilities)
for three detection algorithms, namely, the maximum-likelihood algorithm for detecting the ultra-wideband
quasi radio signal with unknown duration (Eqs. (20) and (33)), the maximum-likelihood algorithm for detect-
ing the ultra-wideband quasi radio signal with known duration (Eqs. (49) and (50)), and the quasioptimal
algorithm for detecting an ultra-wideband quasi radio signal with unknown duration (Eqs. (36) and (48)).
This allows one to perform comparative analysis of efficiency of the detectors of an ultra-wideband quasi
radio signal with unknown duration with allowance for complexity of their hardware or software realizations.

As an example, let us consider the detection of an ultra-wideband quasi radio signal with the modu-
lating function

f(t) = exp(−νt/T2), (51)

where ν characterizes the signal decrease rate.
Figure 3 shows the dependences of the signal-missing probability for three various detection algorithms

863



Fig. 3. Signal-missing probabilities as functions of
the SNR for fixed false-alarm probabilities.

Fig. 4. Detection-efficiency loss as a function of
the SNR.

on the SNR of Eq. (22) for the fixed level of the false-alarm probabilities α = αq = α1 = 0.1. The solid,
dashed, and dash-dotted curves characterize the efficiencies (33), (50), and (48) of the maximum-likelihood
detector of the signal with unknown duration, the maximum-likelihood detector of the signal with known
duration, and the quasioptimal detector of the signal with unknown duration, respectively. When calculating
the curves in Fig. 3, it was assumed that the initial phase of the received signal is ϕ0 = 0, the dynamic range
of possible duration values is k = T2/T1 = 10, ν = 2, κ = 0.5, and the true duration value was chosen in the
middle of the a priori interval τ0 = (T1+T2)/2. The dependences shown in Fig. 3 characterize the detection
efficiency of various-complexity detectors for various a priori data on the signal duration. It is seen in
Fig. 3 that the quasioptimal detector has the worst detection efficiency. The maximum-likelihood detection
of the signal with unknown duration for small SNRs (22) has low efficiency because of the simultaneous a
priori ignorance of the three signal parameters. It is confirmed by the several-order better characteristics
of detection of the ultra-wideband quasi radio signal by the maximum-likelihood detector with unknown
amplitude and initial phase, but known duration.

The influence of the a priori ignorance of duration on the detection efficiency is quantitatively char-
acterized by the loss value

χ1(p) =
β|α = p

β1|α1 = p
, (52)

which is the ratio of the probability of missing the signal with unknown duration, given by Eq. (33), to that
of missing the signal with known duration, given by Eq. (50), for the fixed false-alarm probabilities.

The loss of the quasioptimal detection algorithm because of the input of the ultra-wideband quasi
radio signal instead of the narrowband radio signal is quantitatively characterized by the quantity

χ2(p) =
βq |αq = p

β|α = p
, (53)

which is the ratio of probabilities of missing the ultra-wideband quasi radio signal by the quasioptimal and
maximum-likelihood detectors for the fixed false-alarm probabilities.

Figure 4 shows the dependences of losses (52) and (53) on SNR (22) for α = 0.1, ϕ0 = 0, ν = 2,
k = 10, and κ = 0.5. The solid curve characterizes loss (53) when choosing the nonoptimal detector of the
ultra-wideband quasi radio signal, and the dashed curve, loss (52) in the case of a priori ignorance of the
ultra-wideband quasi radio signal duration.

As is evident from Fig. 4, the a priori ignorance of the ultra-wideband quasi radio signal duration leads
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to an increase in the probabilities of errors by several orders of magnitude. The choice of the nonoptimal
detector also leads to an increase in loss, but to a smaller degree because of the great number of unknown
parameters and inefficient detection for low SNRs on the whole. With increasing SNR, the loss value
increases as well as the efficiency of the maximum-likelihood detector for unknown duration. It should be
noted that the detection efficiency is significantly influenced by the narrowbandness parameter κ. This is
related to the fact that asymptotically, the probabilities of errors for large SNRs are independent of the
form of the signal, but determined only by the value of the jump f(τ0) of its trailing edge, which, in turn,
is specified by the quantity κ.

6. STATISTICAL SIMULATION RESULTS

The above-obtained Eqs. (20) and (33) for the characteristics of the maximum-likelihood detector
of the ultra-wideband quasi radio signal with unknown amplitude, phase, and duration are asymptotically
accurate. Their accuracy increases with increasing a priori interval of possible values of duration, threshold,
and SNR (22). To check the operability of the synthesized maximum-likelihood algorithm for detecting the
ultra-wideband quasi radio signal and determine the applicability range of the asymptotic expressions (20)
and (33) for the false-alarm and signal-missing probabilities, respectively, the statistical simulation of the
maximum-likelihood detector of the ultra-wideband quasi radio signal with modulating function (51) was
performed.

During the simulation, the discrete readouts of the decision statistic (7) are formed at the receiver
output, on the basis of which the likelihood-ratio functional logarithm was approximated by the step function
with the maximum relative rms error ε = 0.1. To simulate the detection algorithm, the readout, which is
maximum among the decision-statistic readouts, was determined and compared with the threshold in the
signal presence and absence. If the threshold was exceeded in the signal absence, the false alarm was
recorded. By analogy, if the threshold was not exceeded in the signal presence, the signal missing was
recorded. The relative frequencies of appearance of the corresponding errors were used as the signal-missing
and false-alarm probability estimates. During the simulation, 106 tests were realized for each SNR value.

The simulation results are shown in Fig. 5 as the

Fig. 5. Statistical simulation results.

dependences of the signal-missing probability (33) on the
SNR (22) for various levels of the false-alarm probabil-
ities (20). The lines and markers are used to denote
the analytically-calculated and simulated dependences,
respectively. The solid curve and the square markers cor-
respond to the false-alarm level α = 10−1, the dashed
curve and the triangular markers, to α = 10−2, and the
dash-dotted curve and the circular markers, to α = 10−3.
When calculating the curves in Fig. 5, it was assumed that
ϕ0 = 0, ν = 2, k = 4, and κ = 0.3.

As is evident from Fig. 5, the asymptotic expres-
sion for the signal-missing probability (33) satisfactorily
describes the experimental dependences. Acceptable con-
vergence of the experimental and theoretical dependences
is already observed for z > 4.

7. CONCLUSIONS

Failure to fulfill the conditions of the relative narrowbandness of a radio signal leads to the necessity
of using the maximum-likelihood detector whose structure significantly differs from that of the maximum-
likelihood detector of the narrowband radio signal with unknown duration. The a priori ignorance of the
signal duration can lead to a substantial deterioration in the detection quality, especially for small SNRs.
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Although the synthesized quasioptimal detector has a rather low operation efficiency because of the receiver
nonoptimality, its use can be justified by the structure simplicity in the case of relatively low requirements
to the detection quality. The performed statistical simulation has confirmed operability of the synthesized
detection algorithm and helped us to determine the applicability range of the asymptotic expressions for
the probabilities of errors. The obtained results allow us to quantitatively characterize the influence of the
a priori ignorance of duration and the choice of the structure of the detector of the ultra-wideband quasi
radio signal on the detection efficiency.
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